A simple dimensionality reduction technique for fast similarity search in large time series databases

被引:133
作者
Keogh, EJ [1 ]
Pazzani, MJ [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
来源
KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS: CURRENT ISSUES AND NEW APPLICATIONS | 2000年 / 1805卷
关键词
D O I
10.1007/3-540-45571-x_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of similarity search in large time series databases. We introduce a novel-dimensionality reduction technique that supports an indexing algorithm that is more than an order of magnitude faster than the previous best known method. In addition to being much faster our approach has numerous other advantages. It is simple to understand and implement, allows more flexible distance measures including weighted Euclidean queries and the index can be built in linear time. We call our approach PCA-indexing (Piecewise Constant Approximation) and experimentally validate it on space telemetry, financial, astronomical, medical and synthetic data.
引用
收藏
页码:122 / 133
页数:12
相关论文
共 22 条
[1]  
Agrawal R., 1993, EFFICIENT SIMILARITY
[2]  
Agrawal R., 1995, VLDB
[3]  
[Anonymous], 1996, P 12 IEEE INT C DAT
[4]  
[Anonymous], P 3 INT C KNOWL DISC
[5]  
[Anonymous], 1999, KDD '99
[6]  
CHAKRABARTI K, 1999, P IEEE INT C DAT ENG
[7]  
Chan KP, 1999, P 15 INT C DAT ENG
[8]  
DAS G, 1998, P 3 INT C KNOWL DISC
[9]  
Faloutsos C., 1995, P 1995 ACM SIGMOD IN, P163
[10]  
FALOUTSOS C, 1994, P ACM SIGMOD C MINN