A Cauchy problem for the Cauchy-Riemann operator

被引:0
作者
Ly, Ibrahim [1 ]
机构
[1] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
Nonlinear PDI; Cauchy problem; Zaremba problem; ITERATIVE METHOD;
D O I
10.1007/s13370-020-00810-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for a nonlinear elliptic equation with data on a piece S of the boundary surface partial derivative X. By the Cauchy problem is meant any boundary value problem for an unknown function u in a domain X with the property that the data on S, if combined with the differential equations in X, allows one to determine all derivatives of u on S by means of functional equations. In the case of real analytic data of the Cauchy problem, the existence of a local solution near S is guaranteed by the Cauchy-Kovalevskaya theorem. We discuss a variational setting of the Cauchy problem which always possesses a generalized solution.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 14 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]  
Aizenberg L.A., 1993, CARLEMAN FORMULAS CO
[3]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[4]  
Evans L., 1998, GRADUATE STUDIES MAT
[5]  
Hadamard J, 1932, PROBLEM CAUCHY EQUAT
[6]  
KOZLOV VA, 1991, COMP MATH MATH PHYS+, V31, P45
[7]   On level set type methods for elliptic Cauchy problems [J].
Leitao, A. ;
Alves, M. Marques .
INVERSE PROBLEMS, 2007, 23 (05) :2207-2222
[8]   An iterative method for solving Cauchy problems for the p-Laplace operator [J].
Ly, I. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) :1079-1088
[9]   The Cauchy problem for nonlinear elliptic equations [J].
Ly, Ibrahim ;
Tarkhanov, Nikolai .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) :2494-2505
[10]  
Morrey jr C. B., 2009, MULTIPLE INTEGRALS C