A heuristic algorithm for the construction of good linear codes

被引:10
作者
Zwanzger, Johannes [1 ]
机构
[1] Univ Bayreuth, Dept Math, D-95440 Bayreuth, Germany
关键词
coding theory; extension; heuristic algorithm; high minimum distance; linear codes; weight distribution;
D O I
10.1109/TIT.2008.920323
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we describe a heuristic method for the construction of linear codes with given parameters n, k, q, and a prescribed minimum distance of at least d. Our approach is based on a function estimating the probability that a code of dimension k and blocklength n' < n over G F (q) is extendable to a code with the given properties. Combining this evaluation function with a search algorithm, we were able to improve 40 entries in the international tables for the best known minimum distance in the cases q = 2 5 71 9 and found at least two new optimal linear codes.
引用
收藏
页码:2388 / 2392
页数:5
相关论文
共 8 条
[1]   LOCAL SEARCH IN CODING THEORY [J].
AARTS, EHL ;
VANLAARHOVEN, PJM .
DISCRETE MATHEMATICS, 1992, 106 :11-18
[2]  
BETTEN A, 2005, ERROR CORRECTING LIN
[3]  
BHARGAVA VK, 1991, IEEE T INFORM THEORY, V37, P552
[4]   New bounds for n4(k,d) and classification of some optimal codes over GF(4) [J].
Bouyukliev, I ;
Grassl, M ;
Varbanov, Z .
DISCRETE MATHEMATICS, 2004, 281 (1-3) :43-66
[5]   Optimal linear codes from matrix groups [J].
Braun, M ;
Kohnert, A ;
Wassermann, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4247-4251
[6]  
Grassl M., Tables of linear codes and quantum codes
[7]   A BOUND FOR ERROR-CORRECTING CODES [J].
GRIESMER, JH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :532-542
[8]   Improved bounds for ternary linear codes of dimension [J].
Gulliver, TA ;
Ostergard, PRJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) :1377-1381