Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

被引:25
作者
Altin, P. A. [1 ]
McDonald, G. [1 ]
Doering, D. [1 ]
Debs, J. E. [1 ]
Barter, T. H. [1 ]
Close, J. D. [1 ]
Robins, N. P. [1 ]
Haine, S. A. [2 ]
Hanna, T. M. [3 ,4 ]
Anderson, R. P. [5 ]
机构
[1] Australian Natl Univ, Dept Quantum Sci, ARC Ctr Excellence Quantum Atom Opt, Canberra, ACT 0200, Australia
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Quantum Atom Opt, Brisbane, Qld 4072, Australia
[3] Natl Inst Stand & Technol, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Gaithersburg, MD 20899 USA
[5] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
GASES;
D O I
10.1088/1367-2630/13/6/065020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10(6) Bose-condensed Rb-87 atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the vertical bar F = 1, m(F) = 0 > -> vertical bar F = 2, m(F) = 0 > clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10(6) condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.
引用
收藏
页数:21
相关论文
共 32 条
[1]   85Rb tunable-interaction Bose-Einstein condensate machine [J].
Altin, P. A. ;
Robins, N. P. ;
Doering, D. ;
Debs, J. E. ;
Poldy, R. ;
Figl, C. ;
Close, J. D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (06)
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]   Spatially inhomogeneous phase evolution of a two-component Bose-Einstein condensate [J].
Anderson, R. P. ;
Ticknor, C. ;
Sidorov, A. I. ;
Hall, B. V. .
PHYSICAL REVIEW A, 2009, 80 (02)
[4]   A cold atom pyramidal gravimeter with a single laser beam [J].
Bodart, Q. ;
Merlet, S. ;
Malossi, N. ;
Dos Santos, F. Pereira ;
Bouyer, P. ;
Landragin, A. .
APPLIED PHYSICS LETTERS, 2010, 96 (13)
[5]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[6]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286
[7]   Optics and interferometry with atoms and molecules [J].
Cronin, Alexander D. ;
Schmiedmayer, Joerg ;
Pritchard, David E. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1051-1129
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[10]   Spin Self-Rephasing and Very Long Coherence Times in a Trapped Atomic Ensemble [J].
Deutsch, C. ;
Ramirez-Martinez, F. ;
Lacroute, C. ;
Reinhard, F. ;
Schneider, T. ;
Fuchs, J. N. ;
Piechon, F. ;
Laloe, F. ;
Reichel, J. ;
Rosenbusch, P. .
PHYSICAL REVIEW LETTERS, 2010, 105 (02)