A Parameter-Based Ostrowski-Gruss Type Inequalities with Multiple Points for Derivatives Bounded by Functions on Time Scales

被引:4
作者
Kermausuor, Seth [1 ]
Nwaeze, Eze R. [2 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
关键词
Ostrowski-Gruss-type inequality; Montgomery identity; time scales; parameter; IMPROVEMENT;
D O I
10.3390/math6120326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present some Ostrowski-Gruss-type inequalities on time scales for functions whose derivatives are bounded by functions for k points via a parameter. The 2D versions of these inequalities are also presented. Our results generalize some of the results in the literature. As a by-product, we apply our results to the continuous and discrete calculus to obtain some interesting inequalities in this direction.
引用
收藏
页数:15
相关论文
共 35 条
[1]   Inequalities on time scales: A survey [J].
Agarwal, R ;
Bohner, M ;
Peterson, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04) :535-557
[2]  
[Anonymous], 1988, Ein Ma kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten
[3]  
[Anonymous], 2009, COMMUN MATH ANAL
[4]  
Bohner M, 2004, DYNAM SYST APPL, V13, P351
[5]  
Bohner M, 2005, DYNAM SYST APPL, V14, P579
[6]  
Bohner M., 2007, Commun. Math. Anal., V3
[7]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]  
Bohner M., 2008, J. Inequal. Pure Appl. Math., V9, P8
[9]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[10]   Improvement of some Ostrowski-Gruss type inequalities [J].
Cheng, XL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) :109-114