Computational design of anti-CRISPR proteins with improved inhibition potency

被引:17
作者
Mathony, Jan [1 ,2 ,3 ]
Harteveld, Zander [4 ,5 ]
Schmelas, Carolin [6 ,7 ,8 ]
zu Belzen, Julius Upmeier [1 ,2 ,3 ,9 ]
Aschenbrenner, Sabine [1 ,2 ,3 ,10 ]
Sun, Wei [11 ,12 ]
Hoffmann, Mareike D. [1 ,10 ]
Stengl, Christina [1 ]
Scheck, Andreas [4 ,5 ]
Georgeon, Sandrine [4 ,5 ]
Rosset, Stephane [4 ,5 ]
Wang, Yanli [11 ,12 ]
Grimm, Dirk [6 ,7 ,8 ,13 ,14 ]
Eils, Roland [2 ,3 ,9 ]
Correia, Bruno E. [4 ,5 ]
Niopek, Dominik [1 ,9 ]
机构
[1] Heidelberg Univ, Synthet Biol Grp, BioQuant Ctr, Heidelberg, Germany
[2] Berlin Inst Hlth, Digital Hlth Ctr, Berlin, Germany
[3] Charite, Berlin, Germany
[4] Ecole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland
[5] Swiss Inst Bioinformat, Lausanne, Switzerland
[6] Univ Hosp Heidelberg, Dept Infect Dis, Virol, Heidelberg, Germany
[7] Heidelberg Univ, BioQuant Ctr, Heidelberg, Germany
[8] Heidelberg Univ, Cluster Excellence CellNetworks, Heidelberg, Germany
[9] Univ Hosp Heidelberg, Hlth Data Sci Unit, Heidelberg, Germany
[10] German Canc Res Ctr, Dept Theoret Bioinformat, Heidelberg, Germany
[11] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing, Peoples R China
[12] Chinese Acad Sci, Inst Biophys, Key Lab RNA Biol, Beijing, Peoples R China
[13] German Ctr Infect Res DZIF, Heidelberg, Germany
[14] German Ctr Cardiovasc Res DZHK Partner Site Heide, Heidelberg, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
GENOME; ALGORITHM;
D O I
10.1038/s41589-020-0518-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR-Cas technologies. However, the available Acr repertoire is limited to naturally occurring variants. Here, we applied structure-based design on AcrIIC1, a broad-spectrum CRISPR-Cas9 inhibitor, to improve its efficacy on different targets. We first show that inserting exogenous protein domains into a selected AcrIIC1 surface site dramatically enhances inhibition of Neisseria meningitidis (Nme)Cas9. Then, applying structure-guided design to the Cas9-binding surface, we converted AcrIIC1 into AcrIIC1X, a potent inhibitor of the Staphylococcus aureus (Sau)Cas9, an orthologue widely applied for in vivo genome editing. Finally, to demonstrate the utility of AcrIIC1X for genome engineering applications, we implemented a hepatocyte-specific SauCas9 ON-switch by placing AcrIIC1X expression under regulation of microRNA-122. Our work introduces designer Acrs as important biotechnological tools and provides an innovative strategy to safeguard CRISPR technologies.
引用
收藏
页码:725 / +
页数:12
相关论文
共 49 条
[1]   Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9 [J].
Agudelo, Daniel ;
Carter, Sophie ;
Velimirovic, Minja ;
Duringer, Alexis ;
Rivest, Jean-Francois ;
Levesque, Sebastien ;
Loehr, Jeremy ;
Mouchiroud, Mathilde ;
Cyr, Denis ;
Waters, Paula J. ;
Laplante, Mathieu ;
Moineau, Sylvain ;
Goulet, Adeline ;
Doyon, Yannick .
GENOME RESEARCH, 2020, 30 (01) :107-117
[2]   NmeCas9 is an intrinsically high-fidelity genome-editing platform [J].
Amrani, Nadia ;
Gao, Xin D. ;
Liu, Pengpeng ;
Edraki, Alireza ;
Mir, Aamir ;
Ibraheim, Raed ;
Gupta, Ankit ;
Sasaki, Kanae E. ;
Wu, Tong ;
Donohoue, Paul D. ;
Settle, Alexander H. ;
Lied, Alexandra M. ;
McGovern, Kyle ;
Fuller, Chris K. ;
Cameron, Peter ;
Fazzio, Thomas G. ;
Zhu, Lihua Julie ;
Wolfe, Scot A. ;
Sontheimer, Erik J. .
GENOME BIOLOGY, 2018, 19
[3]   Comparing Human Factors for Augmented Reality Supported Single-User and Collaborative Repair Operations of Industrial Robots [J].
Aschenbrenner, Doris ;
Leutert, Florian ;
Cencen, Argun ;
Verlinden, Jouke ;
Schilling, Klaus ;
Latoschik, Marc ;
Lukosch, Stephan .
FRONTIERS IN ROBOTICS AND AI, 2019, 6
[4]   Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae [J].
Basgall, Erianna M. ;
Goetting, Samantha C. ;
Goeckel, Megan E. ;
Giersch, Rachael M. ;
Roggenkamp, Emily ;
Schrock, Madison N. ;
Halloran, Megan ;
Finnigan, Gregory C. .
MICROBIOLOGY-SGM, 2018, 164 (04) :464-474
[5]   Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines [J].
Boerner, Kathleen ;
Niopek, Dominik ;
Cotugno, Gabriella ;
Kaldenbach, Michaela ;
Pankert, Teresa ;
Willemsen, Joschka ;
Zhang, Xian ;
Schuermann, Nina ;
Mockenhaupt, Stefan ;
Serva, Andrius ;
Hiet, Marie-Sophie ;
Wiedtke, Ellen ;
Castoldi, Mirco ;
Starkuviene, Vytaute ;
Erfle, Holger ;
Gilbert, Daniel F. ;
Bartenschlager, Ralf ;
Boutros, Michael ;
Binder, Marco ;
Streetz, Konrad ;
Kraeusslich, Hans-Georg ;
Grimm, Dirk .
NUCLEIC ACIDS RESEARCH, 2013, 41 (21) :e199
[6]   Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system [J].
Bondy-Denomy, Joe ;
Pawluk, April ;
Maxwell, Karen L. ;
Davidson, Alan R. .
NATURE, 2013, 493 (7432) :429-U181
[7]   Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins [J].
Bondy-Denomy, Joseph ;
Garcia, Bianca ;
Strum, Scott ;
Du, Mingjian ;
Rollins, MaryClare F. ;
Hidalgo-Reyes, Yurima ;
Wiedenheft, Blake ;
Maxwell, Karen L. ;
Davidson, Alan R. .
NATURE, 2015, 526 (7571) :136-+
[8]   rstoolbox - a Python']Python library for large-scale analysis of computational protein design data and structural bioinformatics [J].
Bonet, Jaume ;
Harteveld, Zander ;
Sesterhenn, Fabian ;
Scheck, Andreas ;
Correia, Bruno E. .
BMC BIOINFORMATICS, 2019, 20 (1)
[9]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[10]   Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9 [J].
Bubeck, Felix ;
Hoffmann, Mareike D. ;
Harteveld, Zander ;
Aschenbrenner, Sabine ;
Bietz, Andreas ;
Waldhauer, Max C. ;
Boerner, Kathleen ;
Fakhiri, Julia ;
Schmelas, Carolin ;
Dietz, Laura ;
Grimm, Dirk ;
Correia, Bruno E. ;
Eils, Roland ;
Niopek, Dominik .
NATURE METHODS, 2018, 15 (11) :924-+