Terahertz Nanoscopy of Plasmonic Resonances with a Quantum Cascade Laser

被引:58
作者
Degl'Innocenti, Riccardo [1 ]
Wallis, Robert [1 ]
Wei, Binbin [1 ]
Xiao, Long [1 ,2 ]
Kindness, Stephen J. [1 ]
Mitrofanov, Oleg [3 ]
Braeuninger-Weimer, Philipp [2 ]
Hofmann, Stephan [2 ]
Beere, Harvey E. [1 ]
Ritchie, David A. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Engn, JJ Thomson Ave, Cambridge CB3 0FA, England
[3] UCL, Dept Elect & Elect Engn, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
near-field microscopy; terahertz; plasmonics; photonic crystals; quantum cascade laser; self-mixing detection; OPTICAL-PROPERTIES; FORCE MICROSCOPE; GRAPHENE; FE; AL; TI; METALS; PB; MO; AU;
D O I
10.1021/acsphotonics.7b00687
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a terahertz (THz) scattering near-field optical microscope (s-SNOM) based on a quantum cascade laser implemented as both source and detector in a self-mixing scheme utilizing resonant quartz tuning forks as a sensitive nanopositioning element. The homemade s-SNOM, based on a resonant tuning fork and metallic tip, operates in tapping mode with a spatial resolution of similar to 78 nm. The quantum cascade laser is realized from a bound-to-continuum active region design with a central emission of similar to 2.85 THz, which has been lens-coupled in order to maximize the feedback into the laser cavity. Accordingly, the spatial resolution corresponds to >lambda/1000. The s-SNOM has been used to investigate a bidimensional plasmonic photonic crystal and to observe the optical resonant modes supported by coupled plasmonic planar antennas, showing remarkable agreement with the theoretical predictions. The compactness, unique sensitivity, and fast acquisition capability of this approach make the proposed s-SNOM a unique tool for solid-state investigations and biomedical imaging.
引用
收藏
页码:2150 / 2157
页数:8
相关论文
共 44 条
[1]  
Alonso-González P, 2017, NAT NANOTECHNOL, V12, P31, DOI [10.1038/NNANO.2016.185, 10.1038/nnano.2016.185]
[2]   A phase-locked shear-force microscope for distance regulation in near-field optical microscopy [J].
Atia, WA ;
Davis, CC .
APPLIED PHYSICS LETTERS, 1997, 70 (04) :405-407
[3]   Graphene Conductance Uniformity Mapping [J].
Buron, Jonas D. ;
Petersen, Dirch H. ;
Boggild, Peter ;
Cooke, David G. ;
Hilke, Michael ;
Sun, Jie ;
Whiteway, Eric ;
Nielsen, Peter F. ;
Hansen, Ole ;
Yurgens, August ;
Jepsen, Peter U. .
NANO LETTERS, 2012, 12 (10) :5074-5081
[4]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[5]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[6]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[7]   Terahertz molecular resonance of cancer DNA [J].
Cheon, Hwayeong ;
Yang, Hee-jin ;
Lee, Sang-Hun ;
Kim, Young A. ;
Son, Joo-Hiuk .
SCIENTIFIC REPORTS, 2016, 6
[8]   Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser [J].
Dean, Paul ;
Mitrofanov, Oleg ;
Keeley, James ;
Kundu, Iman ;
Li, Lianhe ;
Linfield, Edmund H. ;
Davies, A. Giles .
APPLIED PHYSICS LETTERS, 2016, 108 (09)
[9]   Terahertz imaging through self-mixing in a quantum cascade laser [J].
Dean, Paul ;
Lim, Yah Leng ;
Valavanis, Alex ;
Kliese, Russell ;
Nikolic, Milan ;
Khanna, Suraj P. ;
Lachab, Mohammad ;
Indjin, Dragan ;
Ikonic, Zoran ;
Harrison, Paul ;
Rakic, Aleksandar D. ;
Linfield, Edmund H. ;
Davies, A. Giles .
OPTICS LETTERS, 2011, 36 (13) :2587-2589
[10]   Hollow metallic waveguides integrated with terahertz quantum cascade lasers [J].
Degl'Innocenti, R. ;
Shah, Y. D. ;
Jessop, D. S. ;
Ren, Y. ;
Mitrofanov, O. ;
Beere, H. E. ;
Ritchie, D. A. .
OPTICS EXPRESS, 2014, 22 (20) :24439-24449