Polylogarithmic zeta functions and their p-adic analogues

被引:3
作者
Young, Paul Thomas [1 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
关键词
Arakawa-Kaneko zeta functions; poly-Bernoulli polynomials; convolution identities; generalized harmonic number series; p-adic analysis; POLY-BERNOULLI NUMBERS; MULTIPLE ZETA; VALUES; EULER; POLYNOMIALS;
D O I
10.1142/S1793042117501512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a broad family of zeta functions which includes the classical zeta functions of Riemann and Hurwitz, the beta and eta functions of Dirichlet, and the Lerch transcendent, as well as the Arakawa-Kaneko zeta functions and the recently introduced alternating Arakawa-Kaneko zeta functions. We construct their p-adic analogues and indicate the many strong connections between the complex and p-adic versions. As applications, we focus on the alternating case and show how certain families of alternating odd harmonic number series can be expressed in terms of Riemann zeta and Dirichlet beta values.
引用
收藏
页码:2747 / 2764
页数:18
相关论文
共 23 条
[1]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[2]  
Calegari F, 2005, INT MATH RES NOTICES, V2005, P1235
[3]  
Candelpergher B, 2013, ENSEIGN MATH, V59, P39
[4]   Poly-Bernoulli numbers and polynomials with a q parameter [J].
Cenkci, Mehmet ;
Komatsu, Takao .
JOURNAL OF NUMBER THEORY, 2015, 152 :38-54
[5]  
Coppo M.-A., 2016, MEMOIRE HABILITATION
[6]   Inverse binomial series and values of Arakawa-Kaneko zeta functions [J].
Coppo, Marc-Antoine ;
Candelpergher, Bernard .
JOURNAL OF NUMBER THEORY, 2015, 150 :98-119
[7]   The Arakawa-Kaneko zeta function [J].
Coppo, Marc-Antoine ;
Candelpergher, Bernard .
RAMANUJAN JOURNAL, 2010, 22 (02) :153-162
[8]   Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent [J].
Guillera, Jesus ;
Sondow, Jonathan .
RAMANUJAN JOURNAL, 2008, 16 (03) :247-270
[9]  
Kaneko M, 1997, J. Thor. Nombres Bordeaux, V9, P199, DOI [10.5802/jtnb.197, DOI 10.5802/JTNB.197]
[10]   On p-adic Hurwitz-type Euler zeta functions [J].
Kim, Min-Soo ;
Hu, Su .
JOURNAL OF NUMBER THEORY, 2012, 132 (12) :2977-3015