Defect correction method for time-dependent viscoelastic fluid flow

被引:14
作者
Zhang, Yunzhang [1 ]
Hou, Yanren [1 ]
Mu, Baoying [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
viscoelastic fluid flow; finite element; time dependent; defect correction method; discontinuous Galerkin; error estimate; Weissenberg number; NAVIER-STOKES EQUATIONS; SCHEME; FEM;
D O I
10.1080/00207160.2010.521549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A defect correction method for solving the time-dependent viscoelastic fluid flow, aiming at high Weissenberg numbers, is presented. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the residual is considered in the correction step. We show the convergence of the method and derive an error estimate. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method.
引用
收藏
页码:1546 / 1563
页数:18
相关论文
共 50 条
  • [41] Time-dependent MHD Couette flow in a porous annulus
    Jha, Basant K.
    Apere, Clement A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (08) : 1959 - 1969
  • [42] TIME-DEPENDENT BEHAVIOR OF THE FLOW IN A BUBBLE-COLUMN
    GROEN, JS
    MUDDE, RF
    VANDENAKKER, HEA
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1995, 73 (A6) : 615 - 621
  • [43] Increasing Flow Complexity in Time-Dependent Modulated Ferrofluidic Couette Flow
    Altmeyer, S.
    FLUID DYNAMICS, 2022, 57 (03) : 387 - 400
  • [44] A time-dependent model of crack-tip craze zone in viscoelastic polymers
    Luo, WB
    Yang, TQ
    Wang, XY
    STRUCTURAL INTEGRITY AND MATERIALS AGING: FRACTURE MECHANICS AND APPLICATIONS, 2003, : 137 - 144
  • [45] The Time-Dependent Generator Coordinate Method in Nuclear Physics
    Verriere, Marc
    Regnier, David
    FRONTIERS IN PHYSICS, 2020, 8
  • [46] Two-Level Finite Element Approximation for Oseen Viscoelastic Fluid Flow
    Nasu, Nasrin Jahan
    Mahbub, Md Abdullah Al
    Hussain, Shahid
    Zheng, Haibiao
    MATHEMATICS, 2018, 6 (05):
  • [47] Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow
    Cesmelioglu, A.
    Riviere, B.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (04) : 249 - 280
  • [48] Decoupled transient schemes for viscoelastic fluid flow with inertia
    D'Avino, G.
    Hulsen, M. A.
    Maffettone, P. L.
    COMPUTERS & FLUIDS, 2012, 66 : 183 - 193
  • [49] A spectral element method for the time-dependent two-dimensional Euler equations: applications to flow simulations
    Xu, CJ
    Maday, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 91 (01) : 63 - 85
  • [50] Optimal error estimate of the penalty method for the 2D/3D time-dependent MHD equations
    Shi, Kaiwen
    Feng, Xinlong
    Su, Haiyan
    NUMERICAL ALGORITHMS, 2023, 93 (03) : 1337 - 1371