A defect correction method for solving the time-dependent viscoelastic fluid flow, aiming at high Weissenberg numbers, is presented. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the residual is considered in the correction step. We show the convergence of the method and derive an error estimate. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method.
机构:
Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
Zhang, Yunzhang
Xu, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Luoyang Inst Sci & Technol, Fac Math & Phys Educ, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
Xu, Chao
Zhou, Jiaquan
论文数: 0引用数: 0
h-index: 0
机构:
Luoyang Inst Sci & Technol, Fac Math & Phys Educ, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
机构:
Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
Zhang, Yunzhang
Xu, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Luoyang Inst Sci & Technol, Fac Math & Phys Educ, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
Xu, Chao
Zhou, Jiaquan
论文数: 0引用数: 0
h-index: 0
机构:
Luoyang Inst Sci & Technol, Fac Math & Phys Educ, Luoyang 471023, Peoples R ChinaHenan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China