Defect correction method for time-dependent viscoelastic fluid flow

被引:14
|
作者
Zhang, Yunzhang [1 ]
Hou, Yanren [1 ]
Mu, Baoying [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
viscoelastic fluid flow; finite element; time dependent; defect correction method; discontinuous Galerkin; error estimate; Weissenberg number; NAVIER-STOKES EQUATIONS; SCHEME; FEM;
D O I
10.1080/00207160.2010.521549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A defect correction method for solving the time-dependent viscoelastic fluid flow, aiming at high Weissenberg numbers, is presented. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the residual is considered in the correction step. We show the convergence of the method and derive an error estimate. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method.
引用
收藏
页码:1546 / 1563
页数:18
相关论文
共 50 条
  • [21] A Decomposition Method for the Analysis of Viscoelastic Structural Dynamics with Time-Dependent Poisson's Ratio
    Chen, Q.
    Worden, K.
    STRAIN, 2011, 47 : E1 - E14
  • [22] LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR TIME-DEPENDENT INCOMPRESSIBLE FLUID FLOW
    Wang, Haijin
    Liu, Yunxian
    Zhang, Qiang
    Shu, Chi-Wang
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 91 - 121
  • [23] An incremental pressure correction finite element method for the time-dependent Oldroyd flows
    Liu, Cui
    Si, Zhiyong
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 351 : 99 - 115
  • [24] An optimal control method for time-dependent fluid-structure interaction problems
    Yongxing Wang
    Peter K. Jimack
    Mark A. Walkley
    Dongmin Yang
    Harvey M. Thompson
    Structural and Multidisciplinary Optimization, 2021, 64 : 1939 - 1962
  • [25] An optimal control method for time-dependent fluid-structure interaction problems
    Wang, Yongxing
    Jimack, Peter K.
    Walkley, Mark A.
    Yang, Dongmin
    Thompson, Harvey M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (04) : 1939 - 1962
  • [26] Time-dependent fluid-structure interaction
    Hsiao, George C.
    Sayas, Francisco-Javier
    Weinacht, Richard J.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (02) : 486 - 500
  • [27] IMPORTANCE OF VISCOELASTIC CHARACTERISTICS IN DETERMINING FUNCTIONALITY OF TIME-DEPENDENT MATERIALS
    Emri, Igor
    Zupancic, Barbara
    Gergesova, Marina
    Saprunov, Ivan
    Gonzalez-Gutierrez, Joamin
    Bek, Marko
    DYNA-COLOMBIA, 2012, 79 (175): : 97 - 104
  • [28] Convergence limit in numerical modeling of steady contraction viscoelastic flow and time-dependent behavior near the limit
    Kwon, Youngdon
    Han, JungHyun
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2010, 22 (04) : 237 - 245
  • [29] Numerical simulation of time-dependent non-Newtonian compressible fluid flow in porous media: Finite element method and time integration approach
    Ahmad, Salman
    Tiamiyu, Abd'gafar Tunde
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [30] THE WEAK GALERKIN FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT STOKES FLOW
    Wang, Xiuli
    Liu, Yuanyuan
    Zhai, Qilong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (05) : 732 - 745