Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals

被引:0
作者
Budak, Huseyin [1 ]
Ali, Muhammad Aamir [2 ]
Kashuri, Artion [3 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Iraq
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Ismail Qemali, Fac Tech Sci, Dept Math, Vlora, Albania
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2022年 / 67卷 / 01期
基金
中国国家自然科学基金;
关键词
Hermite-Hadamard inequality; F-convex; general fractional integral; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.24193/subbmath.2022.1.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we firstly summarize some properties of the family F and F-convex functions which are defined by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 28 条
[1]  
Ali M.A., 2019, HERMITE HADAMA UNPUB
[2]  
[Anonymous], 2000, RGMIA Monographs
[3]   ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTION [J].
Budak, H. ;
Tunc, T. ;
Sarikaya, M. Z. .
MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) :169-191
[4]   On Ostrowski Type Inequalities For F-convex Function [J].
Budak, Huseyin ;
Sarikaya, Mehmet Zeki .
INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
[5]   Hermite-Hadamard Type Inequalities for F-Convex Function Involving Fractional Integrals [J].
Budaka, Huseyin ;
Sarikaya, Mehmet Zeki ;
Yildiz, Mustafa Kemal .
FILOMAT, 2018, 32 (16) :5509-5518
[6]  
Defnetti B., 1949, ANN MAT PUR APPL, V30, P173, DOI DOI 10.1007/BF02415006
[7]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[8]  
Goren~o R., 1997, FRACTIONAL CALCULUS, P223
[9]  
Hudzik H., 1994, Aequationes Math, V48, P100, DOI DOI 10.1007/BF01837981
[10]   APPROXIMATELY CONVEX FUNCTIONS [J].
HYERS, DH ;
ULAM, SM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (05) :821-828