On Biased Stochastic Gradient Estimation

被引:0
|
作者
Driggs, Derek [1 ]
Liang, Jingwei [2 ,3 ]
Schonlieb, Carola-Bibiane [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
stochastic gradient descent; variance reduction; biased gradient estimation; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a uniform analysis of biased stochastic gradient methods for minimizing convex, strongly convex, and non-convex composite objectives, and identify settings where bias is useful in stochastic gradient estimation. The framework we present allows us to extend proximal support to biased algorithms, including SAG and SARAH, for the first time in the convex setting. We also use our framework to develop a new algorithm, Stochastic Average Recursive GradiEnt (SARGE), that achieves the oracle complexity lower-bound for nonconvex, finite-sum objectives and requires strictly fewer calls to a stochastic gradient oracle per iteration than SVRG and SARAH. We support our theoretical results with numerical experiments that demonstrate the benefits of certain biased gradient estimators.
引用
收藏
页数:43
相关论文
共 50 条
  • [21] OPTIMAL SURVEY SCHEMES FOR STOCHASTIC GRADIENT DESCENT WITH APPLICATIONS TO M-ESTIMATION
    Clemencon, Stephan
    Bertail, Patrice
    Chautru, Emilie
    Papa, Guillaume
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 310 - 337
  • [22] Estimation of simultaneous equation models by backpropagation method using stochastic gradient descent
    Perez-Sanchez, Belen
    Perea, Carmen
    Ballester, Guillem Duran
    Lopez-Espin, Jose J.
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [23] Stochastic quasi-gradient methods: variance reduction via Jacobian sketching
    Gower, Robert M.
    Richtarik, Peter
    Bach, Francis
    MATHEMATICAL PROGRAMMING, 2021, 188 (01) : 135 - 192
  • [24] Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
    Konecny, Jakub
    Liu, Jie
    Richtarik, Peter
    Takac, Martin
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 242 - 255
  • [25] Error Analysis of Stochastic Gradient Descent Ranking
    Chen, Hong
    Tang, Yi
    Li, Luoqing
    Yuan, Yuan
    Li, Xuelong
    Tang, Yuanyan
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (03) : 898 - 909
  • [26] Fractional stochastic gradient descent for recommender systems
    Khan, Zeshan Aslam
    Chaudhary, Naveed Ishtiaq
    Zubair, Syed
    ELECTRONIC MARKETS, 2019, 29 (02) : 275 - 285
  • [27] Stochastic gradient descent and fast relaxation to thermodynamic equilibrium: A stochastic control approach
    Breiten, Tobias
    Hartmann, Carsten
    Neureither, Lara
    Sharma, Upanshu
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)
  • [28] Optimal stochastic gradient descent algorithm for filtering
    Turali, M. Yigit
    Koc, Ali T.
    Kozat, Suleyman S.
    DIGITAL SIGNAL PROCESSING, 2024, 155
  • [29] STOCHASTIC CONDITIONAL GRADIENT plus plus : (NON)CONVEX MINIMIZATION AND CONTINUOUS SUBMODULAR MAXIMIZATION
    Hassani, Hamed
    Karbasi, Amin
    Mokhtari, Aryan
    Shen, Zebang
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 3315 - 3344
  • [30] Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems
    Xu, Ling
    Ding, Feng
    Yang, Erfu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (01) : 148 - 165