On Biased Stochastic Gradient Estimation

被引:0
|
作者
Driggs, Derek [1 ]
Liang, Jingwei [2 ,3 ]
Schonlieb, Carola-Bibiane [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
stochastic gradient descent; variance reduction; biased gradient estimation; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a uniform analysis of biased stochastic gradient methods for minimizing convex, strongly convex, and non-convex composite objectives, and identify settings where bias is useful in stochastic gradient estimation. The framework we present allows us to extend proximal support to biased algorithms, including SAG and SARAH, for the first time in the convex setting. We also use our framework to develop a new algorithm, Stochastic Average Recursive GradiEnt (SARGE), that achieves the oracle complexity lower-bound for nonconvex, finite-sum objectives and requires strictly fewer calls to a stochastic gradient oracle per iteration than SVRG and SARAH. We support our theoretical results with numerical experiments that demonstrate the benefits of certain biased gradient estimators.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] The Powerball Method With Biased Stochastic Gradient Estimation for Large-Scale Learning Systems
    Yang, Zhuang
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [2] On the Convergence of Decentralized Stochastic Gradient Descent With Biased Gradients
    Jiang, Yiming
    Kang, Helei
    Liu, Jinlan
    Xu, Dongpo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 549 - 558
  • [3] Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
    Denevi, Giulia
    Ciliberto, Carlo
    Grazzi, Riccardo
    Pontil, Massimiliano
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Nonasymptotic Bounds for Stochastic Optimization With Biased Noisy Gradient Oracles
    Bhavsar, Nirav
    Prashanth, L. A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) : 1628 - 1641
  • [5] Analysis of biased stochastic gradient descent using sequential semidefinite programs
    Hu, Bin
    Seiler, Peter
    Lessard, Laurent
    MATHEMATICAL PROGRAMMING, 2021, 187 (1-2) : 383 - 408
  • [6] POLICY EVALUATION WITH STOCHASTIC GRADIENT ESTIMATION TECHNIQUES
    Zhou, Yi
    Fu, Michael C.
    Ryzhov, Ilya O.
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 3039 - 3050
  • [7] Efficient preconditioned stochastic gradient descent for estimation in latent variable models
    Baey, Charlotte
    Delattre, Maud
    Kuhn, Estelle
    Leger, Jean-Benoist
    Lemler, Sarah
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [8] Adaptive Biased Stochastic Optimization
    Yang, Zhuang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 3067 - 3078
  • [9] Stochastic Natural Gradient Descent by Estimation of Empirical Covariances
    Luigi, Malago
    Matteo, Matteucci
    Giovanni, Pistone
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 949 - 956
  • [10] Overlap Removal by Stochastic Gradient Descent With(out) Shape Awareness
    Giovannangeli, Loann
    Lalanne, Frederic
    Giot, Romain
    Bourqui, Romain
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (12) : 7500 - 7517