SCHWARZIAN DERIVATIVES OF CONVEX MAPPINGS

被引:16
作者
Chuaqui, Martin [1 ]
Duren, Peter [2 ]
Osgood, Brad [3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago 22, Chile
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Convex mapping; Schwarzian derivative; Schwarzian norm; univalence; Schwarz lemma; Schwarz-Christoffel formula; quasidisk; John domain;
D O I
10.5186/aasfm.2011.3628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simple proof is given for Nehari's theorem that an analytic function f which maps the unit disk onto a convex region has Schwarzian norm parallel to f parallel to <= 2. The inequality in sharper form leads to the conclusion that no convex mapping with parallel to f parallel to = 2 can map onto a quasidisk. In particular, every bounded convex mapping has Schwarzian norm parallel to f parallel to < 2. The analysis involves a structural formula for the pre-Schwarzian of a convex mapping, which is studied in further detail.
引用
收藏
页码:449 / 460
页数:12
相关论文
共 15 条
[1]  
Ahlfors L. V., 1962, P AM MATH SOC, V13, P975, DOI [DOI 10.2307/2034099, DOI 10.1090/S0002-9939-1962-0148896-1]
[2]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[3]  
Bieberbach L., 2000, CONFORMAL MAPPING
[4]   SHARP DISTORTION-THEOREMS ASSOCIATED WITH THE SCHWARZIAN DERIVATIVE [J].
CHUAQUI, M ;
OSGOOD, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :289-298
[5]  
Chuaqui M, 1996, J REINE ANGEW MATH, V471, P77
[6]   AHLFORS-WEILL EXTENSIONS OF CONFORMAL-MAPPINGS AND CRITICAL-POINTS OF THE POINCARE METRIC [J].
CHUAQUI, M ;
OSGOOD, B .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (04) :659-668
[7]  
Duren P. L., 1983, Univalent Functions
[8]   ON THE NEHARI UNIVALENCE CRITERION AND QUASICIRCLES [J].
GEHRING, FW ;
POMMERENKE, C .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) :226-242
[9]  
Hummel J, 1957, PACIFIC J MATH, V7, P1381, DOI DOI 10.2140/PJM.1957.7.1381
[10]  
Kim S-A., 1993, J. Anal, V1, P109