Implementation of machine learning algorithms for detecting missing radioactive material

被引:2
作者
Durbin, Matthew [1 ]
Lintereur, Azaree [1 ]
机构
[1] Penn State Univ, Ken & Mary Alice Lindquist Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16801 USA
关键词
Nuclear safeguards; Machine learning; Material unaccounted for; Gamma-ray detection;
D O I
10.1007/s10967-020-07188-4
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The detection of missing radioactive material is an important capability for safeguards measurements. Gamma ray signatures provide sample information, but interpretation is complicated by measurement environments. To determine if machine learning is a viable analysis option, three algorithms are applied to gamma ray detection data to assess their success at identifying missing sources. Preliminary results demonstrate that these algorithms can predict the number and location of missing sources on simple models of spent fuel assemblies. In addition to simulated experiments, a study to investigate if the algorithms can be trained with simulated data and tested on measured data is presented.
引用
收藏
页码:1455 / 1461
页数:7
相关论文
共 19 条
  • [1] [Anonymous], 2004, P 17 INT C NEUR INF
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] Gamma radiation detectors for safeguards applications
    Carchon, R.
    Moeslinger, M.
    Bourva, L.
    Bass, C.
    Zendel, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 579 (01) : 380 - 383
  • [4] Addressing Different Active Neutron Interrogation Signatures from Fissionable Material
    Chichester, David L.
    Seabury, Edward H.
    [J]. 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 956 - 960
  • [5] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [6] Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden
    Favalli, A.
    Vo, D.
    Grogan, B.
    Jansson, P.
    Liljenfeldt, H.
    Mozin, V.
    Schwalbach, P.
    Sjoland, A.
    Tobin, S. J.
    Trellue, H.
    Vaccaro, S.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 820 : 102 - 111
  • [7] INITIAL MCNP6 RELEASE OVERVIEW
    Goorley, T.
    James, M.
    Booth, T.
    Brown, F.
    Bull, J.
    Cox, L. J.
    Durkee, J.
    Elson, J.
    Fensin, M.
    Forster, R. A.
    Hendricks, J.
    Hughes, H. G.
    Johns, R.
    Kiedrowski, B.
    Martz, R.
    Mashnik, S.
    McKinney, G.
    Pelowitz, D.
    Prael, R.
    Sweezy, J.
    Waters, L.
    Wilcox, T.
    Zukaitis, T.
    [J]. NUCLEAR TECHNOLOGY, 2012, 180 (03) : 298 - 315
  • [8] International Atomic Energy Agency, 2015, US NUCL MAT ACC CONT
  • [9] International Atomic Energy Agency, 2011, SAF TECHN EQ
  • [10] International Atomic Energy Agency, 2019, EST SYST CONTR NUCL