Biomimetic and electroactive 3D scaffolds for human neural crest-derived stem cell expansion and osteogenic differentiation

被引:20
作者
Iandolo, Donata [1 ]
Sheard, Jonathan [2 ,3 ]
Levy, Galit Karavitas [4 ]
Pitsalidis, Charalampos [1 ]
Tan, Ellasia [5 ,6 ]
Dennis, Anthony [4 ]
Kim, Ji-Seon [5 ,6 ]
Markaki, Athina E. [4 ]
Widera, Darius [2 ]
Owens, Roisin M. [1 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[2] Univ Reading, Sch Pharm, Cell Biol & Regenerat Med Grp, Whiteknights Campus, Reading RG6 6AP, Berks, England
[3] Sheard BioTech Ltd, Wenlock Rd, London N1 7GU, England
[4] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[5] Imperial Coll London, Dept Phys, London SW7 2B, England
[6] Imperial Coll London, Ctr Plast Elect, London SW7 2B, England
基金
欧盟地平线“2020”;
关键词
COLLAGEN SCAFFOLDS; TISSUE SCAFFOLDS; MATRIX STIFFNESS; BONE; RAMAN; PROLIFERATION; CONDUCTIVITY; TEMPERATURE;
D O I
10.1557/mrc.2020.10
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Osteoporosis is a skeletal disease characterized by bone loss and bone microarchitectural deterioration. The combination of smart materials and stem cells represents a new therapeutic approach. In the present study, highly porous scaffolds are prepared by combining the conducting polymer PEDOT:PSS with collagen type I, the most abundant protein in bone. The inclusion of collagen proves to be an effective way to modulate their mechanical properties and it induces an increase in scaffolds' electrochemical impedance. The biomimetic scaffolds support neural crest-derived stem cell osteogenic differentiation, with no need for scaffold pre-conditioning contrarily to other reports.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 61 条
[11]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[12]   Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies [J].
Fernandez-Yague, Marc A. ;
Abbah, Sunny Akogwu ;
McNamara, Laoise ;
Zeugolis, Dimitrios I. ;
Pandit, Abhay ;
Biggs, Manus J. .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 84 :1-29
[13]   Collagen for bone tissue regeneration [J].
Ferreira, Ana Marina ;
Gentile, Piergiorgio ;
Chiono, Valeria ;
Ciardelli, Gianluca .
ACTA BIOMATERIALIA, 2012, 8 (09) :3191-3200
[14]   ON THE PIEZOELECTRIC EFFECT OF BONE [J].
FUKADA, E ;
YASUDA, I .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1957, 12 (10) :1158-1162
[15]   In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT) [J].
Garreau, S ;
Louarn, G ;
Buisson, JP ;
Froyer, G ;
Lefrant, S .
MACROMOLECULES, 1999, 32 (20) :6807-6812
[16]   Conducting Polymers for Neural Prosthetic and Neural Interface Applications [J].
Green, Rylie ;
Abidian, Mohammad Reza .
ADVANCED MATERIALS, 2015, 27 (46) :7620-7637
[17]   Natural and synthetic nanopores directing osteogenic differentiation of human stem cells [J].
Greiner, Johannes F. W. ;
Gottschalk, Martin ;
Fokin, Nadine ;
Bueker, Bjoern ;
Kaltschmidt, Bernhard Peter ;
Dreyer, Axel ;
Vordemvenne, Thomas ;
Kaltschmidt, Christian ;
Huetten, Andreas ;
Kaltschmidt, Barbara .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2019, 17 :319-328
[18]   Culture bag systems for clinical applications of adult human neural crest-derived stem cells [J].
Greiner, Johannes F. W. ;
Grunwald, Lena-Marie ;
Mueller, Janine ;
Sudhoff, Holger ;
Widera, Darius ;
Kaltschmidt, Christian ;
Kaltschmidt, Barbara .
STEM CELL RESEARCH & THERAPY, 2014, 5
[19]   Highly porous scaffolds of PEDOT:PSS for bone tissue engineering [J].
Guex, Anne Geraldine ;
Puetzer, Jennifer L. ;
Armgarth, Astrid ;
Littmann, Elena ;
Stavrinidou, Eleni ;
Giannelis, Emmanuel P. ;
Malliaras, George G. ;
Stevens, Molly M. .
ACTA BIOMATERIALIA, 2017, 62 :91-101
[20]   Conducting Polymers for Tissue Engineering [J].
Guo, Baolin ;
Ma, Peter X. .
BIOMACROMOLECULES, 2018, 19 (06) :1764-1782