Biomimetic and electroactive 3D scaffolds for human neural crest-derived stem cell expansion and osteogenic differentiation

被引:20
作者
Iandolo, Donata [1 ]
Sheard, Jonathan [2 ,3 ]
Levy, Galit Karavitas [4 ]
Pitsalidis, Charalampos [1 ]
Tan, Ellasia [5 ,6 ]
Dennis, Anthony [4 ]
Kim, Ji-Seon [5 ,6 ]
Markaki, Athina E. [4 ]
Widera, Darius [2 ]
Owens, Roisin M. [1 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[2] Univ Reading, Sch Pharm, Cell Biol & Regenerat Med Grp, Whiteknights Campus, Reading RG6 6AP, Berks, England
[3] Sheard BioTech Ltd, Wenlock Rd, London N1 7GU, England
[4] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[5] Imperial Coll London, Dept Phys, London SW7 2B, England
[6] Imperial Coll London, Ctr Plast Elect, London SW7 2B, England
基金
欧盟地平线“2020”;
关键词
COLLAGEN SCAFFOLDS; TISSUE SCAFFOLDS; MATRIX STIFFNESS; BONE; RAMAN; PROLIFERATION; CONDUCTIVITY; TEMPERATURE;
D O I
10.1557/mrc.2020.10
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Osteoporosis is a skeletal disease characterized by bone loss and bone microarchitectural deterioration. The combination of smart materials and stem cells represents a new therapeutic approach. In the present study, highly porous scaffolds are prepared by combining the conducting polymer PEDOT:PSS with collagen type I, the most abundant protein in bone. The inclusion of collagen proves to be an effective way to modulate their mechanical properties and it induces an increase in scaffolds' electrochemical impedance. The biomimetic scaffolds support neural crest-derived stem cell osteogenic differentiation, with no need for scaffold pre-conditioning contrarily to other reports.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 61 条
  • [1] [Anonymous], GLOB POL IN 2015
  • [2] Stem Cell Therapy for Osteoporosis
    Antebi, Ben
    Pelled, Gadi
    Gazit, Dan
    [J]. CURRENT OSTEOPOROSIS REPORTS, 2014, 12 (01) : 41 - 47
  • [3] Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels
    Azoidis, Ioannis
    Metcalfe, Joel
    Reynolds, James
    Keeton, Shirley
    Hakki, Sema S.
    Sheard, Jonathan
    Widera, Darius
    [J]. MRS COMMUNICATIONS, 2017, 7 (03) : 458 - 465
  • [4] GENERATION OF ELECTRIC POTENTIALS BY BONE IN RESPONSE TO MECHANICAL STRESS
    BASSETT, CAL
    BECKER, RO
    [J]. SCIENCE, 1962, 137 (3535) : 1063 - &
  • [5] Collagen scaffolds with tailored pore geometry for building three-dimensional vascular networks
    Berdichevski, A.
    Birch, M. A.
    Markaki, A. E.
    [J]. MATERIALS LETTERS, 2019, 248 : 93 - 96
  • [6] Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking
    Chen, Dai-Chian
    Lai, Yu-Lin
    Lee, Shyh-Yuan
    Hung, Shan-Ling
    Chen, Hen-Li
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 80A (02) : 399 - 409
  • [7] Spectroscopic and conductivity studies of doping in chemically synthesized poly(3,4-ethylenedioxythiophene)
    Chiu, WW
    Travas-Sejdic, J
    Cooney, RP
    Bowmaker, GA
    [J]. SYNTHETIC METALS, 2005, 155 (01) : 80 - 88
  • [8] Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring
    Curto, Vincenzo F.
    Marchiori, Bastien
    Hama, Adel
    Pappa, Anna-Maria
    Ferro, Magali P.
    Braendlein, Marcel
    Rivnay, Jonathan
    Fiocchi, Michel
    Malliaras, George G.
    Ramuz, Marc
    Owens, Roisin M.
    [J]. MICROSYSTEMS & NANOENGINEERING, 2017, 3
  • [9] Oral Mucosal Progenitor Cells Are Potently Immunosuppressive in a Dose-Independent Manner
    Davies, Lindsay C.
    Lonnies, Helena
    Locke, Matthew
    Sundberg, Berit
    Rosendahl, Kerstin
    Gotherstrom, Cecilia
    Le Blanc, Katarina
    Stephens, Phil
    [J]. STEM CELLS AND DEVELOPMENT, 2012, 21 (09) : 1478 - 1487
  • [10] Temperature-dependent Raman spectra of collagen and DNA
    Dong, RX
    Yan, XL
    Pang, XF
    Liu, SG
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2004, 60 (03) : 557 - 561