A Unified Multi-Task Learning Architecture for Fast and Accurate Pedestrian Detection

被引:8
|
作者
Zhou, Chengju [1 ]
Wu, Meiqing [1 ]
Lam, Siew-Kei [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Semantics; Task analysis; Computer architecture; Computational complexity; Robustness; Feature extraction; Neural networks; Multi-task learning; pedestrian detection; semantic segmentation; feature aggregation;
D O I
10.1109/TITS.2020.3019390
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We present a unified multi-task learning architecture for fast and accurate pedestrian detection. Different from existing methods which often focus on either a new loss function or architecture, we propose an improved multi-task convolutional neural network learning architecture to effectively and efficiently interfuse the task of pedestrian detection and semantic segmentation. To achieve this, we integrate a lightweight semantic segmentation branch to Faster R-CNN detection framework that enables end-to-end hard parameter sharing in order to boost the detection performance and maintain computational efficiency as follows. Firstly, a Semantic Segmentation to Feature Module (SS2FM) refines the convolutional features in RPN stage by integrating the features generated from the semantic segmentation branch. Secondly, a Semantic Segmentation to Confidence Module (SS2CM) refines the classification confidence in RPN stage by fusing it with the semantic segmentation confidence. We also introduce an effective anchor matching point transform to alleviate the problem of feature misalignment for heavily occluded pedestrians. The proposed unified multi-task learning architecture lends itself well to more robust pedestrian detection in diverse scenarios with negligible computation overhead. In addition, the proposed architecture can achieve high detection performance with low resolution input images, which significantly reduces the computational complexity. Experiment results on CityPersons and Caltech datasets show that our method is the fastest among all state-of-the-art pedestrian detection methods while exhibiting competitive detection performance.
引用
收藏
页码:982 / 996
页数:15
相关论文
共 50 条
  • [41] Driver Drowsiness Detection by Multi-task and Transfer Learning
    Chang, Yuan
    Kameyama, Wataru
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2022, 2022, 12177
  • [42] On Multi-task Learning for Facial Action Unit Detection
    Zhang, Xiao
    Mahoor, Mohammad H.
    Nielsen, Rodney D.
    PROCEEDINGS OF 2013 28TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ 2013), 2013, : 202 - 207
  • [43] Facial Landmark Detection by Deep Multi-task Learning
    Zhang, Zhanpeng
    Luo, Ping
    Loy, Chen Change
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 94 - 108
  • [44] Multi-task Learning for Stance and Early Rumor Detection
    Chunyan Yongheng Chen
    Wanli Yin
    Optical Memory and Neural Networks, 2021, 30 : 131 - 139
  • [45] Hateful Memes Detection Based on Multi-Task Learning
    Ma, Zhiyu
    Yao, Shaowen
    Wu, Liwen
    Gao, Song
    Zhang, Yunqi
    MATHEMATICS, 2022, 10 (23)
  • [46] Deep Multi-task Learning for Interpretable Glaucoma Detection
    Mojab, Nooshin
    Noroozi, Vahid
    Yu, Philip S.
    Hallak, Joelle A.
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 167 - 174
  • [47] Multi-task Learning for Transit Service Disruption Detection
    Ji, Taoran
    Fu, Kaiqun
    Self, Nathan
    Lu, Chang-Tien
    Ramakrishnan, Naren
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 634 - 641
  • [48] VOICE TOXICITY DETECTION USING MULTI-TASK LEARNING
    Nandwana, Mahesh Kumar
    He, Yifan
    Liu, Joseph
    Yu, Xiao
    Shang, Charles
    Du Bois, Eloi
    McGuire, Morgan
    Bhat, Kiran
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 331 - 335
  • [49] Pedestrian Attribute Recognition via Hierarchical Multi-task Learning and Relationship Attention
    Gao, Lian
    Huang, Di
    Guo, Yuanfang
    Wang, Yunhong
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1340 - 1348
  • [50] Unified concept and assertion detection using contextual multi-task learning in a clinical decision support system
    Narayanan, Sankaran
    Achan, Pradeep
    Rangan, P. Venkat
    Rajan, Sreeranga P.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 122