A method for handling batch-to-batch parametric drift using moving horizon estimation: Application to run-to-run MPC of batch crystallization

被引:37
|
作者
Kwon, Joseph Sang-Il [1 ]
Nayhouse, Michael [1 ]
Orkoulas, Gerassimos [2 ]
Ni, Dong [3 ]
Christofides, Panagiotis D. [1 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Biomol & Chem Engn, Los Angeles, CA 90095 USA
[2] Widener Univ, Sch Engn, Chester, PA 19013 USA
[3] Zhejiang Univ, Dept Control Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[4] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Run-to-run control; Parameter estimation; Moving horizon estimation; Model predictive control; Batch crystallization; Crystal shape control; CRYSTAL-GROWTH; LYSOZYME; MULTISCALE; CONTROLLER;
D O I
10.1016/j.ces.2015.01.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, we develop a run-to-run (R2R) model parameter estimation scheme based on moving horizon estimation (MHE) concepts for the modeling of batch-to-batch process model parameter variation using a polynomial regression scheme in a moving horizon fashion. Subsequently, the batch process model parameters computed via the proposed R2R model parameter estimation scheme are used in a model predictive controller (MPC) within each batch to compute a set of optimal jacket temperatures for the production of crystals with a desired shape distribution in a batch crystallization process. The ability of the proposed method to suppress the inherent variation in the solubility caused by batch-to-batch parametric drift and handle the noise in post batch measurements is demonstrated by applying the proposed parameter estimation and control method to a kinetic Monte Carlo (kMC) simulation model of a batch crystallization process used to produce hen-egg-white (HEW) lysozyme crystals. Furthermore, the performance of the proposed R2R model parameter estimation scheme is evaluated with respect to different orders of polynomials and different moving horizon lengths in order to calculate the best parameter estimates. The average crystal shape distribution of crystals produced from the closed loop simulation of the batch crystallizer under the MPC with the proposed R2R model parameter estimation scheme is much closer to a desired set point value compared to those of the double exponentially weighted moving average based MPC (dEWMA-based MPC) and that of MPC based on the nominal process model. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:210 / 219
页数:10
相关论文
共 12 条
  • [1] Detection and Isolation of Batch-to-Batch Parametric Drift in Crystallization Using In-Batch and Post-Batch Measurements
    Kwon, Joseph Sang-Il
    Nayhouse, Michael
    Christofides, Panagiotis D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (20) : 5514 - 5526
  • [2] Batch sequencing for run-to-run control: Application to chemical mechanical polishing
    Chen, YH
    Su, AJ
    Shiu, SJ
    Yu, CC
    Shen, SH
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (13) : 4676 - 4686
  • [3] Run-to-Run Optimization of Batch Processes Using Set-Based Constraints
    Hille, Rubin
    Budman, Hector M.
    IFAC PAPERSONLINE, 2017, 50 (01): : 4678 - 4683
  • [4] Online learning-based predictive control of crystallization processes under batch-to-batch parametric drift
    Zheng, Yingzhe
    Zhao, Tianyi
    Wang, Xiaonan
    Wu, Zhe
    AICHE JOURNAL, 2022, 68 (11)
  • [5] SAS interface for run-to-run batch process monitoring using real-time data
    Nelson, TR
    Grimshaw, SD
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, 1997, : 1215 - 1219
  • [6] Run-to-run fed-batch optimization for protein production using recombinant Escherichia coli
    Ko, Chih-Lung
    Wang, Feng-Sheng
    BIOCHEMICAL ENGINEERING JOURNAL, 2006, 30 (03) : 279 - 285
  • [7] Insulin Pump Therapy Optimization Using Run-to-Run Control With Batch-Varying Gain
    Wang, Hui
    Wang, Youqing
    DIABETES, 2013, 62 : A252 - A252
  • [8] Online Learning for Machine Learning-Based Modeling and Predictive Control of Crystallization Processes under Batch-to-Batch Parametric Drift
    Zheng, Yingzhe
    Wu, Zhe
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP 2022), 2022, : 216 - 221
  • [9] Handling Parametric Drift in Batch Crystallization Using Predictive Control with R2R Model Parameter Estimation
    Kwon, Joseph Sangil
    Nayhouse, Michael
    Ni, Doug
    Christofides, Panagiotis D.
    IFAC PAPERSONLINE, 2015, 48 (08): : 912 - 917
  • [10] A novel run-to-run optimization algorithm for batch processes using localized partial least squares regression models
    Jeong, Dong Hwi
    Lee, Chang Jun
    Lee, Jong Min
    2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), 2017, : 107 - 112