Bayesian latent class analysis when the reference test is imperfect

被引:51
|
作者
Cheung, A. [1 ,2 ]
Dufour, S. [3 ]
Jones, G. [4 ]
Kostoulas, P. [5 ]
Stevenson, M. A. [1 ,2 ]
Singanallur, N. B. [2 ,6 ]
Firestone, S. M. [1 ,2 ]
机构
[1] Univ Melbourne, Fac Vet & Agr Sci, Sch Vet Sci, 142 Royal Parade, Parkville, Vic 3010, Australia
[2] CSIRO, OIE Collaborating Ctr Diagnost Test Validat Asia, 5 Portarlington Rd, East Geelong, Vic 3219, Australia
[3] Univ Montreal, Fac Vet Med, 3200 Rue Sicotte, St Hyacinthe, PQ J2S 2M2, Canada
[4] Massey Univ, Sch Fundamental Sci, PN461 Private Bag 11222, Palmerston North 4442, New Zealand
[5] Univ Thessaly, Sch Hlth Sci, Trikalon 224, Kardhitsa 43100, Greece
[6] CSIRO Hlth & Biosecur, Australian Ctr Dis Preparedness, 5 Portarlington Rd, East Geelong, Vic 3219, Australia
来源
REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES | 2021年 / 40卷 / 01期
关键词
Bayesian latent class analysis; Diagnostic test evaluation; Gold standard; Imperfect test; Prevalence; Sensitivity; Specificity; 3 SEROLOGICAL TESTS; MODELING CONDITIONAL DEPENDENCE; OPERATING CHARACTERISTIC CURVES; DIAGNOSTIC-TEST ACCURACY; REAL-TIME PCR; PARATUBERCULOSIS INFECTION; DISEASE PREVALENCE; REGRESSION-MODELS; DAIRY-CATTLE; RISK-FACTORS;
D O I
10.20506/rst.40.1.3224
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Latent class analysis (LCA) has allowed epidemiologists to overcome the practical constraints faced by traditional diagnostic test evaluation methods, which require both a gold standard diagnostic test and ample numbers of appropriate reference samples. Over the past four decades, LCA methods have expanded to allow epidemiologists to evaluate diagnostic tests and estimate true prevalence using imperfect tests over a variety of complex data structures and scenarios, including during the emergence of novel infectious diseases. The objective of this review is to provide an overview of recent developments in LCA methods, as well as a practical guide to applying Bayesian LCA (BLCA) to the evaluation of diagnostic tests. Before conducting a BLCA, the suitability of BLCA for the pathogen of interest, the availability of appropriate samples, the number of diagnostic tests, and the structure of the data should be carefully considered. While formulating the model, the model's structure and specification of informative priors will affect the likelihood that useful inferences can be drawn. With the growing need for advanced analytical methods to evaluate diagnostic tests for newly emerging diseases, LCA is a promising field of research for both the veterinary and medical disciplines.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 50 条
  • [1] Estimating prevalence and test accuracy in disease ecology: How Bayesian latent class analysis can boost or bias imperfect test results
    Helman, Sarah K.
    Mummah, Riley O.
    Gostic, Katelyn M.
    Buhnerkempe, Michael G.
    Prager, Katherine C.
    Lloyd-Smith, James O.
    ECOLOGY AND EVOLUTION, 2020, 10 (14): : 7221 - 7232
  • [2] Latent Class Models in Diagnostic Studies When There is No Reference Standard-A Systematic Review
    van Smeden, Maarten
    Naaktgeboren, Christiana A.
    Reitsma, Johannes B.
    Moons, Karel G. M.
    de Groot, Joris A. H.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (04) : 423 - 431
  • [3] Diagnostic Test Accuracy in Childhood Pulmonary Tuberculosis: A Bayesian Latent Class Analysis
    Schumacher, Samuel G.
    van Smeden, Maarten
    Dendukuri, Nandini
    Joseph, Lawrence
    Nicol, Mark P.
    Pai, Madhukar
    Zar, Heather J.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 184 (09) : 690 - 700
  • [4] Implications of covariate induced test dependence on the diagnostic accuracy of latent class analysis in pulmonary tuberculosis
    Keter, Alfred Kipyegon
    Lynen, Lutgarde
    Van Heerden, Alastair
    Goetghebeur, Els
    Jacobs, Bart K. M.
    JOURNAL OF CLINICAL TUBERCULOSIS AND OTHER MYCOBACTERIAL DISEASES, 2022, 29
  • [5] Evaluation of histopathology, PCR, and qPCR to detect Mikrocytos mackini in oysters Crassostrea gigas using Bayesian latent class analysis
    Polinski, Mark P.
    Laurin, Emilie
    Delphino, Marina K. V. C.
    Lowe, Geoff J.
    Meyer, Gary R.
    Abbott, Cathryn L.
    DISEASES OF AQUATIC ORGANISMS, 2021, 144 : 21 - 31
  • [6] Bayesian hierarchical latent class models for estimating diagnostic accuracy
    Wang, Chunling
    Lin, Xiaoyan
    Nelson, Kerrie P.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (04) : 1112 - 1128
  • [7] Evaluation of three serological tests for the diagnosis of Brucella suis in dogs using Bayesian latent class analysis
    Kneipp, Catherine C.
    Coilparampil, Ronald
    Westman, Mark
    Suann, Monica
    Robson, Jennifer
    Firestone, Simon M.
    Malik, Richard
    Mor, Siobhan M.
    Stevenson, Mark A.
    Wiethoelter, Anke K.
    PREVENTIVE VETERINARY MEDICINE, 2024, 233
  • [8] The accuracy of tuberculous meningitis diagnostic tests using Bayesian latent class analysis
    Huy Ngoc Le
    Sriplung, Hutcha
    Chongsuvivatwong, Virasakdi
    Nhung Viet Nguyen
    Tri Huu Nguyen
    JOURNAL OF INFECTION IN DEVELOPING COUNTRIES, 2020, 14 (05): : 479 - 487
  • [9] STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models
    Kostoulas, Polychronis
    Nielsen, Soren S.
    Branscum, Adam J.
    Johnson, Wesley O.
    Dendukuri, Nandini
    Dhand, Navneet K.
    Toft, Nils
    Gardner, Ian A.
    PREVENTIVE VETERINARY MEDICINE, 2017, 138 : 37 - 47
  • [10] Bayesian meta-analysis of diagnostic tests allowing for imperfect reference standards
    Menten, J.
    Boelaert, M.
    Lesaffre, E.
    STATISTICS IN MEDICINE, 2013, 32 (30) : 5398 - 5413