In-Operando Characterization of P-I-N Perovskite Solar Cells Under Reverse Bias

被引:8
作者
Gould, Isaac E. [1 ,2 ]
Xiao, Chuanxiao [2 ]
Patel, Jay B. [2 ,3 ]
McGehee, Michael D. [1 ,2 ,3 ]
机构
[1] Univ Colorado, Mat Sci & Engn, Boulder, CO 80309 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
来源
2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2021年
关键词
reverse bias; perovskite; KPFM; stability; fullerene; MIGRATION; STABILITY;
D O I
10.1109/PVSC43889.2021.9518723
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A solar module is often exposed to a variety of intensity and uniformity illumination conditions throughout a day. In the field, objects or dirt can block light from hitting the module creating a partial shading event. When a partial shading event occurs the module power point tracking system will typically push the shaded cells into reverse bias in order to avoid the current loss from the other series connected illuminated cells. When perovskite solar cells are operated in reverse bias, electrochemical reactions can occur, leading to both reversible and irreversible performance losses. Excess holes generated by reverse bias cause and push the oxidation reaction of halide ions from the lattice to neutral halogen interstitial. Small interstitial halogen atoms can diffuse across the device and potentially move from the perovskite layer and into the transport layers, shifting the fermi levels in the devices. In this investigation we utilize cross-sectional kelvin probe atomic force microscopy to map the band energetics of perovskite solar cells during reverse bias. We observe a 150 meV decrease in the work function of the C-60. This leads to a decrease of 150 mV and 4 mA/cm(2) in V-oc and in J(sc) respectively. Finally, we discuss methods to prevent this irreversible degradation after a perovskite device is held under reverse bias.
引用
收藏
页码:1365 / 1367
页数:3
相关论文
共 20 条
  • [1] Incorporating Electrochemical Halide Oxidation into Drift-Diffusion Models to Explain Performance Losses in Perovskite Solar Cells under Prolonged Reverse Bias
    Bertoluzzi, Luca
    Patel, Jay B.
    Bush, Kevin A.
    Boyd, Caleb C.
    Kerner, Ross A.
    O'Regan, Brian C.
    McGehee, Michael D.
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (10)
  • [2] Reverse Bias Behavior of Halide Perovskite Solar Cells
    Bowring, Andrea R.
    Bertoluzzi, Luca
    O'Regan, Brian C.
    McGehee, Michael D.
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (08)
  • [3] Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling
    Cheacharoen, Rongrong
    Rolston, Nicholas
    Harwood, Duncan
    Bush, Kevin A.
    Dauskardt, Reinhold H.
    McGehee, Michael D.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) : 144 - 150
  • [4] How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model
    Courtier, Nicola E.
    Cave, James M.
    Foster, Jamie M.
    Walker, Alison B.
    Richardson, Giles
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) : 396 - 409
  • [5] Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
    Domanski, Konrad
    Roose, Bart
    Matsui, Taisuke
    Saliba, Michael
    Turren-Cruz, Silver-Hamill
    Correa-Baena, Juan-Pablo
    Roldan-Carmona, Cristina
    Richardson, Giles
    Foster, Jamie M.
    De Angelis, Filippo
    Ball, James M.
    Petrozza, Annamaria
    Mine, Nicolas
    Nazeeruddin, Mohammad K.
    Tress, Wolfgang
    Gratzel, Michael
    Steiner, Ullrich
    Hagfeldt, Anders
    Abate, Antonio
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) : 604 - 613
  • [6] Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy
    Harwell, J. R.
    Baikie, T. K.
    Baikie, I. D.
    Payne, J. L.
    Ni, C.
    Irvine, J. T. S.
    Turnbull, G. A.
    Samuel, I. D. W.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (29) : 19738 - 19745
  • [7] Jacobsson J. T, PEROVSKITE DAT UNPUB
  • [8] In Situ TEM Analysis of Organic-Inorganic Metal-Halide Perovskite Solar Cells under Electrical Bias
    Jeangros, Quentin
    Duchamp, Martial
    Werner, Jeremie
    Kruth, Maximilian
    Dunin-Borkowski, Rafal E.
    Niesen, Bjoern
    Ballif, Christophe
    Hessler-Wyser, Aicha
    [J]. NANO LETTERS, 2016, 16 (11) : 7013 - 7018
  • [9] Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
    Khenkin, Mark V.
    Katz, Eugene A.
    Abate, Antonio
    Bardizza, Giorgio
    Berry, Joseph J.
    Brabec, Christoph
    Brunetti, Francesca
    Bulovic, Vladimir
    Burlingame, Quinn
    Di Carlo, Aldo
    Cheacharoen, Rongrong
    Cheng, Yi-Bing
    Colsmann, Alexander
    Cros, Stephane
    Domanski, Konrad
    Dusza, Michal
    Fell, Christopher J.
    Forrest, Stephen R.
    Galagan, Yulia
    Di Girolamo, Diego
    Graetzel, Michael
    Hagfeldt, Anders
    von Hauff, Elizabeth
    Hoppe, Harald
    Kettle, Jeff
    Koebler, Hans
    Leite, Marina S.
    Liu, Shengzhong
    Loo, Yueh-Lin
    Luther, Joseph M.
    Ma, Chang-Qi
    Madsen, Morten
    Manceau, Matthieu
    Matheron, Muriel
    McGehee, Michael
    Meitzner, Rico
    Nazeeruddin, Mohammad Khaja
    Nogueira, Ana Flavia
    Odabasi, Cagla
    Osherov, Anna
    Park, Nam-Gyu
    Reese, Matthew O.
    De Rossi, Francesca
    Saliba, Michael
    Schubert, Ulrich S.
    Snaith, Henry J.
    Stranks, Samuel D.
    Tress, Wolfgang
    Troshin, Pavel A.
    Turkovic, Vida
    [J]. NATURE ENERGY, 2020, 5 (01) : 35 - 49
  • [10] Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition
    Kim, Gee Yeong
    Senocrate, Alessandro
    Yang, Tae-Youl
    Gregori, Giuliano
    Gratzel, Michael
    Maier, Joachim
    [J]. NATURE MATERIALS, 2018, 17 (05) : 445 - +