Whole-body MRI radiomics model to predict relapsed/refractory Hodgkin Lymphoma: A preliminary study

被引:4
作者
Albano, Domenico [1 ,2 ]
Cuocolo, Renato [3 ,4 ]
Patti, Caterina [5 ]
Ugga, Lorenzo [6 ]
Chianca, Vito [7 ,8 ]
Tarantino, Vittoria [5 ,9 ]
Faraone, Roberta [1 ]
Albano, Silvia [1 ]
Micci, Giuseppe [1 ]
Costa, Alessandro [5 ]
Paratore, Rosario [10 ]
Ficola, Umberto [10 ]
Lagalla, Roberto [1 ]
Midiri, Massimo [1 ]
Galia, Massimo [1 ]
机构
[1] Univ Palermo, Dipartimento Biomed Neurosci & Diagnost Avanzata, Sez Sci Radiol, Via Vespro 129, I-90127 Palermo, Italy
[2] IRCCS Ist Ortoped Galeazzi, Via Riccardo Galeazzi 4, I-20161 Milan, Italy
[3] Univ Napoli Federico II, Dipartimento Med Clin & Chirurg, Via Pansini 5, I-80131 Naples, Italy
[4] Univ Napoli Federico II, Lab Augmented Real Hlth Monitoring ARHeMLab, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
[5] Azienda Osped Osped Riuniti Villa Sofia Cervello, Unita Operat Oncoematol, Via Trabucco 180, I-90146 Palermo, Italy
[6] Univ Naples Federico II, Dept Adv Biomed Sci, Via Pansini 5, I-80131 Naples, Italy
[7] Osped Evangel Betania, Via Argine 604, I-80147 Naples, Italy
[8] Clin Radiol EOC IIMSI, CH-6900 Lugano, Switzerland
[9] Univ Modena & Reggio Emilia, PhD Program Clin & Expt Med, I-41100 Modena, Italy
[10] La Maddalena Hosp, Nucl Med Dept, Via San Lorenzo 312-D, I-90146 Palermo, Italy
关键词
Magnetic resonance imaging; Positron emission tomography; Machine learning; Texture analysis; Hodgkin Lymphoma; METABOLIC TUMOR VOLUME; F-18-FDG PET; FDG-PET/CT; HETEROGENEITY; CANCER; CT; TOMOGRAPHY;
D O I
10.1016/j.mri.2021.11.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: A strong prognostic score that enables a stratification of newly diagnosed Hodgkin Lymphoma (HL) to identify patients at high risk of refractory/relapsed disease is still needed. Our aim was to investigate the potential value of a radiomics analysis pipeline from whole-body MRI (WB-MRI) exams for clinical outcome prediction in patients with HL. Materials and methods: Index lesions from baseline WB-MRIs of 40 patients (22 females; mean age 31.7 +/- 11.4 years) with newly diagnosed HL treated by ABVD chemotherapy regimen were manually segmented on T1weighted, STIR, and DWI images for texture analysis feature extraction. A machine learning approach based on the Extra Trees classifier and incorporating clinical variables, 18F-FDG-PET/CT-derived metabolic tumor volume, and WB-MRI radiomics features was tested using cross-validation to predict refractory/relapsed disease. Results: Relapsed disease was observed in 10/40 patients (25%), two of whom died due to progression of disease and graft versus host disease, while eight reached the complete remission. In total, 1403 clinical and radiomics features were extracted, of which 11 clinical variables and 171 radiomics parameters from both original and filtered images were selected. The 3 best performing Extra Trees classifier models obtained an equivalent highest mean accuracy of 0.78 and standard deviation of 0.09, with a mean AUC of 0.82 and standard deviation of 0.08. Conclusions: Our preliminary results demonstrate that a combined machine learning and texture analysis model to predict refractory/relapsed HL on WB-MRI exams is feasible and may help in the clinical outcome prediction in HL patients.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 36 条
  • [1] Reclassifying patients with early-stage Hodgkin lymphoma based on functional radiographic markers at presentation
    Akhtari, Mani
    Milgrom, Sarah A.
    Pinnix, Chelsea C.
    Reddy, Jay P.
    Dong, Wenli
    Smith, Grace L.
    Mawlawi, Osama
    Abou Yehia, Zeinab
    Gunther, Jillian
    Osborne, Eleanor M.
    Andraos, Therese Y.
    Wogan, Christine F.
    Rohren, Eric
    Garg, Naveen
    Chuang, Hubert
    Khoury, Joseph D.
    Oki, Yasuhiro
    Fanale, Michelle
    Dabaja, Bouthaina S.
    [J]. BLOOD, 2018, 131 (01) : 84 - 94
  • [2] Whole-body diffusion-weighted MR and FDG-PET/CT in Hodgkin Lymphoma: Predictive role before treatment and early assessment after two courses of ABVD
    Albano, Domenico
    Patti, Caterina
    Matranga, Domenica
    Lagalla, Roberto
    Midiri, Massimo
    Galia, Massimo
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2018, 103 : 90 - 98
  • [3] Osteonecrosis detected by whole body magnetic resonance in patients with Hodgkin Lymphoma treated by BEACOPP
    Albano, Domenico
    Patti, Caterina
    La Grutta, Ludovico
    Grassedonio, Emanuele
    Mule, Antonino
    Brancatelli, Giuseppe
    Lagalla, Roberto
    Midiri, Massimo
    Galia, Massimo
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (05) : 2129 - 2136
  • [4] Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma
    Albano, Domenico
    Patti, Caterina
    Lagalla, Roberto
    Midiri, Massimo
    Galia, Massimo
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (04) : 1082 - 1089
  • [5] Comparison between whole-body MRI with diffusion-weighted imaging and PET/CT in staging newly diagnosed FDG-avid lymphomas.
    Albano, Domenico
    Patti, Caterina
    La Grutta, Ludovico
    Agnello, Francesco
    Grassedonio, Emanuele
    Mule, Antonino
    Cannizzaro, Giorgio
    Ficola, Umberto
    Lagalla, Roberto
    Midiri, Massimo
    Galia, Massimo
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (02) : 313 - 318
  • [6] Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas
    Ben Bouallegue, Faycal
    Al Tabaa, Yassine
    Kafrouni, Marilyne
    Cartron, Guillaume
    Vauchot, Fabien
    Mariano-Goulart, Denis
    [J]. MEDICAL PHYSICS, 2017, 44 (09) : 4608 - 4619
  • [7] The causes and consequences of genetic heterogeneity in cancer evolution
    Burrell, Rebecca A.
    McGranahan, Nicholas
    Bartek, Jiri
    Swanton, Charles
    [J]. NATURE, 2013, 501 (7467) : 338 - 345
  • [8] The clinical application of whole-body diffusion-weighted imaging in the early assessment of chemotherapeutic effects in lymphoma: the initial experience
    Chen, Yunbin
    Zhong, Jing
    Wu, Hui
    Chen, Ningbin
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (02) : 165 - 170
  • [9] Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification
    Cheson, Bruce D.
    Fisher, Richard I.
    Barrington, Sally F.
    Cavalli, Franco
    Schwartz, Lawrence H.
    Zucca, Emanuele
    Lister, T. Andrew
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (27) : 3059 - +
  • [10] Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study
    Chianca, Vito
    Cuocolo, Renato
    Gitto, Salvatore
    Albano, Domenico
    Merli, Ilaria
    Badalyan, Julietta
    Cortese, Maria Cristina
    Messina, Carmelo
    Luzzati, Alessandro
    Parafioriti, Antonina
    Galbusera, Fabio
    Brunetti, Arturo
    Sconfienza, Luca Maria
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2021, 137