Interfacial solar evaporation for water production: from structure design to reliable performance

被引:49
作者
Bai, Haoyu [1 ]
Zhao, Tianhong [1 ]
Cao, Moyuan [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
关键词
STEAM-GENERATION; PHOTOTHERMAL MATERIALS; CORROSION-RESISTANCE; TIO2; PHOTOCATALYSIS; VAPOR GENERATION; ONE SUN; EFFICIENT; DRIVEN; SURFACE; AIR;
D O I
10.1039/c9me00166b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial solar evaporation has emerged as a convenient and efficient strategy for harvesting solar energy, and shows promising application in the fields of water purification, desalination, and atmospheric water harvesting. During the last decade, advanced photothermal materials as well as innovative structural design for preparing high-performance solar evaporators have been widely reported. In this review article, we firstly conclude the basic principle of design and fabrication of current solar evaporators. In the second section, we aim to propose some existing issues that hamper the reliable performance of solar evaporation systems, including the floating stability, anti-scaling ability, heat management, integrated system design, etc. Finally, the prospect of future development of such solar evaporation systems is proposed. This review article is focused on the key problems for real-world application of solar steam generation at air/water interfaces, and could stimulate new thinking about evaporator design and serve as an instruction for future investigations.
引用
收藏
页码:419 / 432
页数:14
相关论文
共 82 条
[1]   Energy efficient materials for solar water distillation - A review [J].
Arunkumar, T. ;
Ao, Yali ;
Luo, Zhifang ;
Zhang, Lin ;
Li, Jing ;
Denkenberger, D. ;
Wang, Jiaqiang .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 115
[2]   A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability [J].
Bai, Haoyu ;
Zhang, Chunhui ;
Long, Zhiyun ;
Geng, Hui ;
Ba, Teer ;
Fan, Yangyang ;
Yu, Cunming ;
Li, Kan ;
Cao, Moyuan ;
Jiang, Lei .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :20966-20972
[3]   High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths [J].
Benten, Hiroaki ;
Nishida, Takaya ;
Mori, Daisuke ;
Xu, Huajun ;
Ohkita, Hideo ;
Ito, Shinzaburo .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :135-140
[4]   Nanomaterials for the water-energy nexus [J].
Boriskina, Svetlana V. ;
Raza, Aikifa ;
Zhang, TieJun ;
Wang, Peng ;
Zhou, Lin ;
Zhu, Jia .
MRS BULLETIN, 2019, 44 (01) :59-66
[5]   Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection [J].
Cao, Moyuan ;
Xiao, Jiasheng ;
Yu, Cunming ;
Li, Kan ;
Jiang, Lei .
SMALL, 2015, 11 (34) :4379-4384
[6]   Advances in solar evaporator materials for freshwater generation [J].
Cao, Sisi ;
Jiang, Qisheng ;
Wu, Xuanhao ;
Ghim, Deoukchen ;
Derami, Hamed Gholami ;
Chou, Ping-I. ;
Jun, Young-Shin ;
Singamaneni, Srikanth .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (42) :24092-24123
[7]   Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation [J].
Chang, Chao ;
Yang, Chao ;
Liu, Yanming ;
Tao, Peng ;
Song, Chengyi ;
Shang, Wen ;
Wu, Jianbo ;
Deng, Tao .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) :23412-23418
[8]   Challenges and Opportunities for Solar Evaporation [J].
Chen, Chaoji ;
Kuang, Yudi ;
Hu, Liangbing .
JOULE, 2019, 3 (03) :683-718
[9]   Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution [J].
Chen, Shichuan ;
Kang, Zhixiong ;
Hu, Xin ;
Zhang, Xiaodong ;
Wang, Hui ;
Xie, Junfeng ;
Zheng, XuSheng ;
Yan, Wensheng ;
Pan, Bicai ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[10]   Contactless steam generation and superheating under one sun illumination [J].
Cooper, Thomas A. ;
Zandavi, Seyed H. ;
Ni, George W. ;
Tsurimaki, Yoichiro ;
Huang, Yi ;
Boriskina, Svetlana V. ;
Chen, Gang .
NATURE COMMUNICATIONS, 2018, 9