Young symmetrizers and additive theory

被引:1
作者
Caldeira, C
da Silva, JAD
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
[2] Univ Lisbon, Dept Matemat, CELC, P-1649003 Lisbon, Portugal
关键词
symmetry class of tensors; minimal polynomial; additive number theory;
D O I
10.1080/0308108031000103084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For lambda partition of m and A finite nonempty subset of a field we define the set of lambda-restricted sums of m -tuples of elements of A , boolean AND m lambda A , and using Additive Number Theory results from [J.A. Dias da Silva and Y.O. Hamidoune ( 1990 ). A note on the minimal polynomial of the Kronecker sum of two linear operators. Linear Algebra Appl. , 141 , 283-287; J.A. Dias da Silva and Y.O. Hamidoune ( 1994 ). Cyclic spaces for Grassmann derivatives and additive theory. Bull. London Math. Soc. , 26 , 140-146] we obtain a lower bound for its cardinality. Next, using results and techniques from [J.A. Dias da Silva and Y.O. Hamidoune ( 1990 ). A note on the minimal polynomial of the Kronecker sum of two linear operators. Linear Algebra Appl. , 141 , 283-287; J.A. Dias da Silva and Y.O. Hamidoune ( 1994 ). Cyclic spaces for Grassmann derivatives and additive theory. Bull. London Math. Soc. , 26 , 140-146] we obtain lower bounds for the degrees of minimal polynomials of restrictions of derivations to ranges of Young symmetrizers and to the symmetry class of tensors V lambda , and we show that the lower bound for the cardinality of boolean AND m lambda A can also be obtained from these lower bounds.
引用
收藏
页码:339 / 359
页数:21
相关论文
共 10 条
[1]  
Cauchy A. L., 1813, J. Ec. Polytech. Math., V9, P39
[2]  
DASILVA JAD, 1990, LINEAR ALGEBRA APPL, V141, P283
[3]   IRREDUCIBLE REPRESENTATIONS OF THE FULL LINEAR GROUP [J].
DASILVA, JAD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 40 (OCT) :161-182
[4]   CYCLIC SPACES FOR GRASSMANN DERIVATIVES AND ADDITIVE THEORY [J].
DASILVA, JAD ;
HAMIDOUNE, YO .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :140-146
[5]  
Davenport H., 1947, J. London Math. Soc, V22, P100, DOI [10.1112/jlms/s1-22.2.100, DOI 10.1112/JLMS/S1-22.2.100]
[6]  
Davenport H., 1935, J. Lond. Math. Soc., V2, P30
[7]  
Dias da Silva J., 1979, LINEAR MULTILINEAR A, V7, P343
[8]   NONZERO DECOMPOSABLE SYMMETRIZED TENSORS [J].
MERRIS, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 17 (03) :287-292
[9]  
[No title captured]
[10]  
[No title captured]