Spark SQL: Relational Data Processing in Spark

被引:752
作者
Armbrust, Michael [1 ]
Xin, Reynold S. [1 ]
Lian, Cheng [1 ]
Huai, Yin [1 ]
Liu, Davies [1 ]
Bradley, Joseph K. [1 ]
Meng, Xiangrui [1 ]
Kaftan, Tomer [3 ]
Franklint, Michael J. [1 ,3 ]
Ghodsi, Ali [1 ]
Zaharia, Matei [1 ,2 ]
机构
[1] Databricks Inc, San Francisco, CA 94105 USA
[2] MIT CSAIL, Cambridge, MA USA
[3] Univ Calif Berkeley, AMPLab, Berkeley, CA USA
来源
SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA | 2015年
关键词
Databases; Data Warehouse; Machine Learning; Spark; Hadoop;
D O I
10.1145/2723372.2742797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spark SQL is a new module in Apache Spark that integrates relational processing with Spark's functional programming API. Built on our experience with Shark, Spark SQL lets Spark programmers leverage the benefits of relational processing (e.g., declarative queries and optimized storage), and lets SQL users call complex analytics libraries in Spark (e.g., machine learning). Compared to previous systems, Spark SQL makes two main additions. First, it offers much tighter integration between relational and procedural processing, through a declarative DataFrame API that integrates with procedural Spark code. Second, it includes a highly extensible optimizer, Catalyst, built using features of the Scala programming language, that makes it easy to add composable rules, control code generation, and define extension points. Using Catalyst, we have built a variety of features (e.g., schema inference for JSON, machine learning types, and query federation to external databases) tailored for the complex needs of modern data analysis. We see Spark SQL as an evolution of both SQL-on-Spark and of Spark itself, offering richer APIs and optimizations while keeping the benefits of the Spark programming model.
引用
收藏
页码:1383 / 1394
页数:12
相关论文
共 29 条
[1]  
Abouzied Azza., 2013, EDBT
[2]   The Stratosphere platform for big data analytics [J].
Alexandrov, Alexander ;
Bergmann, Rico ;
Ewen, Stephan ;
Freytag, Johann-Christoph ;
Hueske, Fabian ;
Heise, Arvid ;
Kao, Odej ;
Leich, Marcus ;
Leser, Ulf ;
Markl, Volker ;
Naumann, Felix ;
Peters, Mathias ;
Rheinlaender, Astrid ;
Sax, Matthias J. ;
Schelter, Sebastian ;
Hoeger, Mareike ;
Tzoumas, Kostas ;
Warneke, Daniel .
VLDB JOURNAL, 2014, 23 (06) :939-964
[3]  
[Anonymous], 2012, P 9 USENIX C NET WOR
[4]  
[Anonymous], 2014, 11 USENIX S OP SYST
[5]  
[Anonymous], 2015, CIDR
[6]  
[Anonymous], 2010, PLDI
[7]  
[Anonymous], 2015, SIGMOD
[8]  
Armbrust M., 2010, SOCC
[9]   ASTERIX: towards a scalable, semistructured data platform for evolving-world models [J].
Behm, Alexander ;
Borkar, Vinayak R. ;
Carey, Michael J. ;
Grover, Raman ;
Li, Chen ;
Onose, Nicola ;
Vernica, Rares ;
Deutsch, Alin ;
Papakonstantinou, Yannis ;
Tsotras, Vassilis J. .
DISTRIBUTED AND PARALLEL DATABASES, 2011, 29 (03) :185-216
[10]  
Bex GreetJan., 2007, VLDB