Comparative Evaluation of Machine Learning Strategies for Analyzing Big Data in Psychiatry

被引:13
作者
Cao, Han [1 ]
Meyer-Lindenberg, Andreas [1 ]
Schwarz, Emanuel [1 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, D-68159 Mannheim, Germany
关键词
multi-task learning; machine learning; biomarker discovery; psychiatry; GENE-EXPRESSION; MEGA-ANALYSIS; SCHIZOPHRENIA; PROFILES; DISEASES; FUTURE;
D O I
10.3390/ijms19113387
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The requirement of innovative big data analytics has become a critical success factor for research in biological psychiatry. Integrative analyses across distributed data resources are considered essential for untangling the biological complexity of mental illnesses. However, little is known about algorithm properties for such integrative machine learning. Here, we performed a comparative analysis of eight machine learning algorithms for identification of reproducible biological fingerprints across data sources, using five transcriptome-wide expression datasets of schizophrenia patients and controls as a use case. We found that multi-task learning (MTL) with network structure (MTL_NET) showed superior accuracy compared to other MTL formulations as well as single task learning, and tied performance with support vector machines (SVM). Compared to SVM, MTL_NET showed significant benefits regarding the variability of accuracy estimates, as well as its robustness to cross-dataset and sampling variability. These results support the utility of this algorithm as a flexible tool for integrative machine learning in psychiatry.
引用
收藏
页数:15
相关论文
共 46 条
  • [1] Ahmed A., 2012, P 21 ACM INT C INF K
  • [2] [Anonymous], JMLR W CP ICML 2011
  • [3] [Anonymous], 2012, MALSAR MULTITASK LEA
  • [4] Transcription and Pathway Analysis of the Superior Temporal Cortex and Anterior Prefrontal Cortex in Schizophrenia
    Barnes, Michael R.
    Huxley-Jones, Julie
    Maycox, Peter R.
    Lennon, Mark
    Thornber, Amy
    Kelly, Fiona
    Bates, Stewart
    Taylor, Adam
    Reid, Juliet
    Jones, Neil
    Schroeder, Joern
    Scorer, Carol A.
    Davies, Ceri
    Hagan, Jim J.
    Kew, James N. C.
    Angelinetta, Claire
    Akbar, Tariq
    Hirsch, Steven
    Mortimer, Ann M.
    Barnes, Thomas R. E.
    de Belleroche, Jackie
    [J]. JOURNAL OF NEUROSCIENCE RESEARCH, 2011, 89 (08) : 1218 - 1227
  • [5] An atlas of genetic correlations across human diseases and traits
    Bulik-Sullivan, Brendan
    Finucane, Hilary K.
    Anttila, Verneri
    Gusev, Alexander
    Day, Felix R.
    Loh, Po-Ru
    Duncan, Laramie
    Perry, John R. B.
    Patterson, Nick
    Robinson, Elise B.
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (11) : 1236 - +
  • [6] Caruana R, 1998, LEARNING TO LEARN, P95, DOI 10.1007/978-1-4615-5529-2_5
  • [7] Chapelle O., 2010, P 16 ACM SIGKDD INT
  • [8] Two gene co-expression modules differentiate psychotics and controls
    Chen, C.
    Cheng, L.
    Grennan, K.
    Pibiri, F.
    Zhang, C.
    Badner, J. A.
    Gershon, E. S.
    Liu, C.
    [J]. MOLECULAR PSYCHIATRY, 2013, 18 (12) : 1308 - 1314
  • [9] Collobert R., 2008, P 25 ICML, P160, DOI [DOI 10.1145/1390156.1390177, 10.1145/1390156.1390177]
  • [10] Multicenter Voxel-Based Morphometry Mega-Analysis of Structural Brain Scans in Obsessive-Compulsive Disorder
    de Wit, Stella J.
    Alonso, Pino
    Schweren, Lizanne
    Mataix-Cols, David
    Lochner, Christine
    Menchon, Jose M.
    Stein, Dan J.
    Fouche, Jean-Paul
    Soriano-Mas, Caries
    Sato, Joao R.
    Hoexter, Marcelo Q.
    Denys, Damiaan
    Nakamae, Takashi
    Nishida, Seiji
    Kwon, Jun Soo
    Jang, Joon Hwan
    Busatto, Geraldo F.
    Cardoner, Narcis
    Cath, Danielle C.
    Fukui, Kenji
    Jung, Wi Hoon
    Kim, Sung Nyun
    Miguel, Euripides C.
    Narumoto, Jin
    Phillips, Mary L.
    Pujol, Jesus
    Remijnse, Peter L.
    Sakai, Yuki
    Shin, Na Young
    Yamada, Kei
    Veltman, Dick J.
    van den Heuvel, Odile A.
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2014, 171 (03) : 340 - 349