Techniques for dual forms of Reed-Muller expansion conversion

被引:10
作者
Yang, M.
Wang, L. [1 ]
Tong, J. R.
Almaini, A. E. A.
机构
[1] Fudan Univ, Microelect Dept, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
[2] Napier Polytech, Sch Engn, Edinburgh EH10 5DT, Midlothian, Scotland
基金
中国国家自然科学基金;
关键词
tabular technique; map technique; reed-muller; canonical OR coincidence;
D O I
10.1016/j.vlsi.2007.02.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Dual Forms of Reed-Muller (DFRM) are implemented in OR/XNOR forms, which are based on the features of coincidence operation. Map folding and transformation techniques are proposed for the conversion between Boolean and DFRM expansions. However, map techniques can only be used for up to 6 variables. To overcome the limitation, serial tabular technique (STT) and parallel tabular technique (PTT) are proposed. STT deals with one variable at a time while PTT generates terms in parallel. Both tabular techniques outperform significantly published work in terms of conversion time. Methods based on on-set canonical sum-of-products minterms and canonical product-of-sums maxterms are also investigated. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 37 条
[21]   Modular PUF Coding Chain with High-Speed Reed-Muller Decoder [J].
Mandry, Holger ;
Herkle, Andreas ;
Kuerzinger, Ludwig ;
Mueelich, Sven ;
Becker, Joachim ;
Fischer, Robert F. H. ;
Ortmanns, Maurits .
2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
[22]   On cosets of the generalized first-order Reed-Muller code with low PMEPR [J].
Schmidt, Kai-Uwe .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) :3220-3232
[23]   LTE系统中Reed-Muller码的编译码算法 [J].
陈发堂 ;
何坚龙 .
重庆邮电大学学报(自然科学版), 2010, (04) :395-399+410
[24]   3GPP中的Reed-Muller编译码算法 [J].
吴湛击 ;
吴伟陵 .
电子学报, 2005, (01) :147-149
[25]   EMA-FPRMs: An Efficient Minimization Algorithm for Fixed Polarity Reed-Muller Expressions [J].
He, Zhenxue ;
Xiao, Limin ;
Zhang, Longbing ;
Gu, Fei ;
Huo, Zhisheng ;
Zhu, Mingfa ;
Ruan, Li ;
Liu, Rui ;
Wang, Xiang .
2016 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2016, :253-256
[26]   Novel synthesis and optimization of multi-level mixed polarity reed-muller functions [J].
Xia, YS ;
Wang, LY ;
Zhou, ZG ;
Ye, XE ;
Hu, JP ;
Almaini, AEA .
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2005, 20 (06) :895-900
[27]   一种改进的Reed-Muller码递归构造方法 [J].
黄俊杰 ;
徐位凯 ;
陈启望 ;
王琳 ;
张肇健 .
重庆邮电大学学报(自然科学版), 2015, 27 (03) :366-371
[28]   Novel Synthesis and Optimization of Multi-Level Mixed Polarity Reed-Muller Functions [J].
Yin-Shui Xia ;
Lun-Yao Wang ;
Zong-Gang Zhou ;
Xi-En Ye ;
Jian-Ping Hu .
Journal of Computer Science and Technology, 2005, 20 :895-900
[29]   TD-LTE系统Reed-Muller译码的仿真及FPGA实现 [J].
李俭兵 ;
吕南 ;
江曹勇 ;
张莉 .
山西电子技术, 2014, (01) :60-62+64
[30]   一种改进的二阶Reed-Muller译码算法 [J].
李效坡 ;
陈发堂 .
通信技术, 2007, (06) :14-15+20