On a Marinacci uniqueness theorem for measures

被引:34
作者
Avallone, A [1 ]
Basile, A
机构
[1] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Stat, I-80126 Naples, Italy
关键词
convex-ranged measures; modular functions; D-posets;
D O I
10.1016/S0022-247X(03)00274-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a uniqueness theorem for measures on D-posets. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:378 / 390
页数:13
相关论文
共 15 条
[1]   Range of finitely additive fuzzy measures [J].
Avallone, A ;
Barbieri, G .
FUZZY SETS AND SYSTEMS, 1997, 89 (02) :231-241
[2]  
BARBIERI G, IN PRESS INTERNET J
[3]  
BAUER H, 1981, PROBABILITY THEORY E
[4]  
Beltrametti E. G., 1981, The Logic of Quantum Mechanics
[5]  
Bhaskara Rao K. P. S., 1983, Theory of Charges
[6]  
Butnariu D., 1993, Triangular Norm-Based Measures and Games with Fuzzy Coalitions
[7]   Subjective probabilities on subjectively unambiguous events [J].
Epstein, LG ;
Zhang, JK .
ECONOMETRICA, 2001, 69 (02) :265-306
[8]   GROUP-VALUED MODULAR-FUNCTIONS [J].
FLEISCHER, I ;
TRAYNOR, T .
ALGEBRA UNIVERSALIS, 1982, 14 (03) :287-291
[9]   Probabilistic sophistication and multiple priors [J].
Marinacci, M .
ECONOMETRICA, 2002, 70 (02) :755-764
[10]  
Marinacci M., 2000, DECISIONS EC FINANCE, DOI 1800247