On a Marinacci uniqueness theorem for measures

被引:34
作者
Avallone, A [1 ]
Basile, A
机构
[1] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Stat, I-80126 Naples, Italy
关键词
convex-ranged measures; modular functions; D-posets;
D O I
10.1016/S0022-247X(03)00274-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a uniqueness theorem for measures on D-posets. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:378 / 390
页数:13
相关论文
共 15 条
  • [1] Range of finitely additive fuzzy measures
    Avallone, A
    Barbieri, G
    [J]. FUZZY SETS AND SYSTEMS, 1997, 89 (02) : 231 - 241
  • [2] BARBIERI G, IN PRESS INTERNET J
  • [3] BAUER H, 1981, PROBABILITY THEORY E
  • [4] Beltrametti E. G., 1981, The Logic of Quantum Mechanics
  • [5] Bhaskara Rao K. P. S., 1983, Theory of Charges
  • [6] Butnariu D., 1993, Triangular Norm-Based Measures and Games with Fuzzy Coalitions
  • [7] Subjective probabilities on subjectively unambiguous events
    Epstein, LG
    Zhang, JK
    [J]. ECONOMETRICA, 2001, 69 (02) : 265 - 306
  • [8] GROUP-VALUED MODULAR-FUNCTIONS
    FLEISCHER, I
    TRAYNOR, T
    [J]. ALGEBRA UNIVERSALIS, 1982, 14 (03) : 287 - 291
  • [9] Probabilistic sophistication and multiple priors
    Marinacci, M
    [J]. ECONOMETRICA, 2002, 70 (02) : 755 - 764
  • [10] Marinacci M., 2000, DECISIONS EC FINANCE, DOI 1800247