Similarity solution to fractional nonlinear space-time diffusion-wave equation

被引:19
|
作者
Silva Costa, F. [1 ]
Marao, J. A. P. F. [1 ]
Alves Soares, J. C. [2 ]
Capelas de Oliveira, E. [2 ]
机构
[1] UEMA, DEMATI, Dept Math, BR-65054970 San Luis, MA, Brazil
[2] Univ Estadual Campinas, Imecc, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
关键词
ASYMPTOTIC-BEHAVIOR;
D O I
10.1063/1.4915293
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, the so-called fractional nonlinear space-time wave-diffusion equation is presented and discussed. This equation is solved by the similarity method using fractional derivatives in the Caputo, Riesz-Feller, and Riesz senses. Some particular cases are presented and the corresponding solutions are shown by means of 2-D and 3-D plots. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Analysis of a meshless method for the time fractional diffusion-wave equation
    Mehdi Dehghan
    Mostafa Abbaszadeh
    Akbar Mohebbi
    Numerical Algorithms, 2016, 73 : 445 - 476
  • [42] Analysis of a meshless method for the time fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 445 - 476
  • [44] Numerical Solution of Nonlinear Space-Time Fractional-Order Advection-Reaction-Diffusion Equation
    Dwivedi, Kushal Dhar
    Rajeev
    Das, Subir
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (06):
  • [45] SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Grande, Ricardo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4172 - 4212
  • [46] Space-time fractional Zener wave equation
    Atanackovic, T. M.
    Janev, M.
    Oparnica, Lj.
    Pilipovic, S.
    Zorica, D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2174):
  • [47] A fractional integro-differentiation interpretation of the solution of a diffusion-wave equation
    A. N. Bogolyubov
    A. A. Potapov
    S. Sh. Rehviashvili
    Moscow University Physics Bulletin, 2010, 65 : 150 - 151
  • [48] A fractional integro-differentiation interpretation of the solution of a diffusion-wave equation
    Bogolyubov, A. N.
    Potapov, A. A.
    Rehviashvili, S. Sh.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2010, 65 (02) : 150 - 151
  • [49] An approximate solution for a fractional diffusion-wave equation using the decomposition method
    Al-Khaled, K
    Momani, S
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) : 473 - 483
  • [50] Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation
    Luchko, Yuri
    Mainardi, Francesco
    Povstenko, Yuriy
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 774 - 784