Analysis of Human and Mouse Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. What Is in the Plate?

被引:44
作者
Boue, Stephanie [1 ]
Paramonov, Ida [1 ]
Jose Barrero, Maria [1 ]
Izpisua Belmonte, Juan Carlos [1 ,2 ]
机构
[1] Ctr Regenerat Med Barcelona CMRB, Barcelona, Spain
[2] Salk Inst Biol Studies, Gene Express Lab, La Jolla, CA 92037 USA
来源
PLOS ONE | 2010年 / 5卷 / 09期
关键词
GENE-EXPRESSION; IPS CELLS; CHROMATIN-STRUCTURE; DEFINED FACTORS; GENERATION; FIBROBLASTS; INDUCTION; MURINE; MICE; DIFFERENTIATION;
D O I
10.1371/journal.pone.0012664
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanaka's group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs) are truly functionally equivalent to embryonic stem cells (ESCs) and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs) which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the best iPSC lines out of a large number of lines generated in each reprogramming experiment.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 84 条
  • [1] Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes
    Aasen, Trond
    Raya, Angel
    Barrero, Maria J.
    Garreta, Elena
    Consiglio, Antonella
    Gonzalez, Federico
    Vassena, Rita
    Bilic, Josipa
    Pekarik, Vladimir
    Tiscornia, Gustavo
    Edel, Michael
    Boue, Stephanie
    Izpisua Belmonte, Juan Carlos
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (11) : 1276 - 1284
  • [2] Differences between human embryonic stem cell lines
    Allegrucci, C.
    Young, L. E.
    [J]. HUMAN REPRODUCTION UPDATE, 2007, 13 (02) : 103 - 120
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] Belting HG, 1998, J EXP ZOOL, V282, P196, DOI 10.1002/(SICI)1097-010X(199809/10)282:1/2<196::AID-JEZ22>3.0.CO
  • [5] 2-R
  • [6] A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    Bernstein, BE
    Mikkelsen, TS
    Xie, XH
    Kamal, M
    Huebert, DJ
    Cuff, J
    Fry, B
    Meissner, A
    Wernig, M
    Plath, K
    Jaenisch, R
    Wagschal, A
    Feil, R
    Schreiber, SL
    Lander, ES
    [J]. CELL, 2006, 125 (02) : 315 - 326
  • [7] Adult mice generated from induced pluripotent stem cells
    Boland, Michael J.
    Hazen, Jennifer L.
    Nazor, Kristopher L.
    Rodriguez, Alberto R.
    Gifford, Wesley
    Martin, Greg
    Kupriyanov, Sergey
    Baldwin, Kristin K.
    [J]. NATURE, 2009, 461 (7260) : 91 - U94
  • [8] Polycomb complexes repress developmental regulators in murine embryonic stem cells
    Boyer, LA
    Plath, K
    Zeitlinger, J
    Brambrink, T
    Medeiros, LA
    Lee, TI
    Levine, SS
    Wernig, M
    Tajonar, A
    Ray, MK
    Bell, GW
    Otte, AP
    Vidal, M
    Gifford, DK
    Young, RA
    Jaenisch, R
    [J]. NATURE, 2006, 441 (7091) : 349 - 353
  • [9] Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
    Brambrink, Tobias
    Foreman, Ruth
    Welstead, G. Grant
    Lengner, Christopher J.
    Wernig, Marius
    Suh, Heikyung
    Jaenisch, Rudolf
    [J]. CELL STEM CELL, 2008, 2 (02) : 151 - 159
  • [10] Reprogramming of murine and human somatic cells using a single polycistronic vector
    Carey, Bryce W.
    Markoulaki, Styliani
    Hanna, Jacob
    Saha, Kris
    Gao, Qing
    Mitalipova, Maisam
    Jaenisch, Rudolf
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) : 157 - 162