WReTaMo Refractory High-Entropy Alloy with High Strength at 1600 °C

被引:21
|
作者
Wan, Yixing [1 ,2 ]
Wang, Qianqian [3 ]
Mo, Jinyong [1 ,2 ]
Zhang, Zhibin [4 ]
Wang, Xin [4 ]
Liang, Xiubing [4 ]
Shen, Baolong [1 ,3 ]
机构
[1] China Univ Min & Technol, Inst Mass Amorphous Met Sci, Sch Mat Sci & Phys, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[3] Southeast Univ, Jiangsu Key Lab Adv Metall Mat, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[4] Acad Mil Med Sci, Def Innovat Inst, Beijing 100071, Peoples R China
基金
中国国家自然科学基金;
关键词
elevated temperature properties; mechanical properties; phase stability; refractory high-entropy alloys; Vickers hardness; MECHANICAL-PROPERTIES; SOLID-SOLUTION; MICROSTRUCTURE; STABILITY; EVOLUTION; ADDITIONS; ELEMENTS; PHASE;
D O I
10.1002/adem.202100765
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Structural materials with higher melting temperatures and better mechanical properties than superalloys are in high demand in refractory applications. A promising WReTaMo refractory high-entropy alloy (RHEA) with high strength at 1600 degrees C is fabricated by vacuum arc melting. The WReTaMo RHEA has a body-centered cubic (BCC) structure with a maximal compressive strength of 1140 MPa and Vickers microhardness of 654 HV at room temperature. The alloy displays a strong resistance to high-temperature softening, showing the high maximal compressive strength of 244 MPa at 1600 degrees C. The deformation of the WReTaMo RHEA compressed at 1600 degrees C maybe resulted from the grain boundary sliding, which leads to the propagation of the cracks along grain boundaries. Face-centered cubic (FCC) phase forms at the surface region of samples annealed above 1800 degrees C due to the diffusion of carbon atoms by gas carburizing in the graphite crucible at such high temperatures. The increase in hardness at temperatures above 1600 degrees C results from the solid solution strengthening of dissolved carbon. The forming ability of the WReTaMo RHEA is also discussed. This work presents a promising high-temperature structural material and fills the vacancy of the mechanical properties of Re-containing RHEAs at 1600 degrees C.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Zhang, Mina
    Zhou, Xianglin
    Li, Jinghao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3657 - 3665
  • [2] Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy
    Feng, Rui
    Feng, Bojun
    Gao, Michael C.
    Zhang, Chuan
    Neuefeind, Joerg C.
    Poplawsky, Jonathan D.
    Ren, Yang
    An, Ke
    Widom, Michael
    Liaw, Peter K.
    ADVANCED MATERIALS, 2021, 33 (48)
  • [3] A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength
    Fu, Zhiqiang
    Jiang, Lin
    Wardini, Jenna L.
    MacDonald, Benjamin E.
    Wen, Haiming
    Xiong, Wei
    Zhang, Dalong
    Zhou, Yizhang
    Rupert, Timothy J.
    Chen, Weiping
    Lavernia, Enrique J.
    SCIENCE ADVANCES, 2018, 4 (10):
  • [4] Superior high-temperature strength in a dual-BCC-phase NbMoTaWHf refractory high-entropy alloy
    Wan, Yixing
    Liang, Xiubing
    Cheng, Yanhai
    Liu, Yanan
    He, Pengfei
    Zhang, Zhibin
    Mo, Jinyong
    INTERMETALLICS, 2024, 175
  • [5] A novel NbTaW0.5 (Mo2C)x refractory high-entropy alloy with excellent mechanical properties
    Wu, Shiyu
    Qiao, Dongxu
    Zhao, Hongliang
    Wang, Jun
    Lu, Yiping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 889
  • [6] An ultra-high strength CrMoNbWTi-C high entropy alloy co-strengthened by dispersed refractory IM and UHTC phases
    Lv, Shasha
    Zu, Yufei
    Chen, Guoqing
    Fu, Xuesong
    Zhou, Wenlong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 1256 - 1264
  • [7] Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys
    Wang, Ruixin
    Tang, Yu
    Lei, Zhifeng
    Ai, Yuanlin
    Tong, Zhixing
    Li, Shun
    Ye, Yicong
    Bai, Shuxin
    MATERIALS & DESIGN, 2022, 213
  • [8] Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy
    Fan, X. J.
    Qu, R. T.
    Zhang, Z. F.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 123 : 70 - 77
  • [9] Effect of Cr on Microstructure and Properties of WVTaTiCrx Refractory High-Entropy Alloy Laser Cladding
    Xu, Zhaomin
    Sun, Zhiping
    Li, Cheng
    Wang, Zhiming
    MATERIALS, 2023, 16 (08)
  • [10] Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite
    Zhang, Yan
    Liu, Yuan
    Li, Yanxiang
    Chen, Xiang
    Zhang, Huawei
    MATERIALS LETTERS, 2016, 174 : 82 - 85