Medical image segmentation by combing the local, global enhancement, and active contour model

被引:1
|
作者
Voronin, V. [1 ,2 ]
Semenishchev, E. [1 ,2 ]
Pismenskova, M. [1 ,2 ]
Balabaeva, O. [1 ]
Agaian, S. [3 ]
机构
[1] Don State Tech Univ, Lab Math Methods Image Proc & Comp Vis Intelligen, Rostov Na Donu, Russia
[2] Moscow State Univ Technol STANKIN, Moscow, Russia
[3] CUNY Coll Staten Isl, Dept Comp Sci, New York, NY USA
来源
ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX) IV | 2019年 / 10999卷
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
medical imaging; image segmentation; enhancement; active contour model; ALGORITHMS;
D O I
10.1117/12.2519584
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The objects in the medical images are not visible due to low contrast and the noise. In general, X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) images are often affected by blurriness, lack of contrast, which are very important for the accuracy of medical diagnosis. It is difficult to segmentation in such case without losing the details of the objects. The goal of image enhancement is to improve certain details of an image and to improve its visual quality. So, image enhancement technology is one of the key procedures in image segmentation for medical imaging. This article presents a two-stage approach, combining novel and traditional algorithms, for the enhancement and segmentation of images of bones obtained from CT. The first stage is a new combined local and global transform domain-based image enhancement algorithm. The basic idea of using local alfa-rooting method is to apply it to different disjoint blocks of different sizes. We used image enhancement non-reference quality measure for optimization alfa-rooting parameters. The second stage applies the modified active contour method based on an anisotropic gradient. The simulation results of the proposed algorithm are compared with other state-of-the-art segmentation methods, and its superiority in the presence of noise and blurred edges on the database of CT images is illustrated.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Active Contour Model Based on Local and Global Image Information
    Liu, Zhiwei
    Zhou, Dongao
    Lin, Qiang
    Lin, Jiayu
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [32] Active Contour Model Coupling with Backward Diffusion for Medical Image Segmentation
    Wang, Guodong
    Pan, Zhenkuan
    Zhang, Weizhong
    Dong, Qian
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 101 - 105
  • [33] Accurate and Robust Active Contour Model for Medical Image Segmentation and Correction
    Yang, Yunyun
    Yang, Yunna
    THIRD INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE (ISICDM 2019), 2019, : 123 - 127
  • [34] Boundary constraint factor embedded localizing active contour model for medical image segmentation
    Han, Bing
    Han, Yiyuan
    Gao, Xinbo
    Zhang, Lixia
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (10) : 3853 - 3862
  • [35] An Adaptive Stopping Active Contour Model for Image Segmentation
    Yuefeng Niu
    Jianzhong Cao
    Zuofeng Zhou
    Journal of Electrical Engineering & Technology, 2019, 14 : 445 - 453
  • [36] An Adaptive Stopping Active Contour Model for Image Segmentation
    Niu, Yuefeng
    Cao, Jianzhong
    Zhou, Zuofeng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (01) : 445 - 453
  • [37] A robust patch-statistical active contour model for image segmentation
    Ge, Qi
    Xiao, Liang
    Zhang, Jun
    Wei, Zhi Hui
    PATTERN RECOGNITION LETTERS, 2012, 33 (12) : 1549 - 1557
  • [38] Image segmentation based on an active contour model of partial image restoration with local cosine fitting energy
    Miao, Jiaqing
    Huang, Ting-Zhu
    Zhou, Xiaobing
    Wang, Yugang
    Liu, Jun
    INFORMATION SCIENCES, 2018, 447 : 52 - 71
  • [39] A statistical active contour model for SAR image segmentation
    Horritt, MS
    IMAGE AND VISION COMPUTING, 1999, 17 (3-4) : 213 - 224
  • [40] An Active Contour Model with Local Variance Force Term and Its Efficient Minimization Solver for Multiphase Image Segmentation
    Liu, Chaoyu
    Qiao, Zhonghua
    Zhang, Qian
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (01) : 144 - 168