Accuracy of Linear Measurements of Maxillary Sinus Dimensions in Gender Identification Using Machine Learning

被引:0
作者
Al-Amodi, Abdullah [1 ]
Kamel, Ibrahim [1 ]
Al-Rawi, Natheer H. [2 ]
Uthman, AsmaaT [3 ]
Shetty, Shishir [2 ]
机构
[1] Univ Sharjah, Coll Comp Informat, Sharjah, U Arab Emirates
[2] Univ Sharjah, Coll Dent Med, Sharjah, U Arab Emirates
[3] Gulf Med Univ, Coll Dent, Ajman, U Arab Emirates
来源
2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE) | 2021年
关键词
Artificial intelligence; maxillary sinus; forensic medicine; gender identification; MULTIDETECTOR COMPUTED-TOMOGRAPHY;
D O I
10.1109/DESE54285.2021.9719421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear measurements of the maxillary sinus are useful for gender prediction. This variation could be used for forensic identification purposes in mass disasters. The study aims to evaluate the accuracy of the artificial intelligence-based technique in gender prediction using linear measurements of maxillary sinus from Cone Beam Computed Tomography CBCT scans.
引用
收藏
页码:407 / 412
页数:6
相关论文
共 31 条
  • [11] Principal component analysis: a review and recent developments
    Jolliffe, Ian T.
    Cadima, Jorge
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2065):
  • [12] JOVANOVIC S, 1984, ACTA ANAT, V118, P122
  • [13] Kanthem Ranjith Kumar, 2015, J Forensic Dent Sci, V7, P163, DOI 10.4103/0975-1475.154595
  • [14] Karamizadeh S., 2013, Journal of Signal and Information Processing, V04, P173, DOI [10.4236/jsip.2013.43b031, DOI 10.4236/JSIP.2013.43B031]
  • [15] Lerno P, 1983, ODONTOL LEG, V216, P39
  • [16] POINTS OF SIGNIFICANCE Principal component analysis
    Lever, Jake
    Krzywinski, Martin
    Atman, Naomi
    [J]. NATURE METHODS, 2017, 14 (07) : 641 - 642
  • [17] machinecurve, PERFORM AFFINITY PRO
  • [18] Medium, 2021, IMPORTANCE DIMENSION
  • [19] ML geeksforgeeks, BIRCH CLUSTRING GEE
  • [20] More Chandramani Bhagwan, 2017, J Forensic Dent Sci, V9, P1, DOI 10.4103/jfo.jfds_25_15