Some Properties of K-Frames in Quaternionic Hilbert Spaces

被引:8
作者
Ellouz, Hanen [1 ]
机构
[1] Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
关键词
Frames; K-frames; Bessel sequence; Quaternionic Hilbert spaces;
D O I
10.1007/s11785-019-00964-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we discuss some properties of K-frames in quaternionic Hilbert spaces such as the invertibility of the frame operator as well as the interchangeability of two Bessel sequences. Further, we propose several approaches to construct K-frames and we show that a T-frame can be constructed from a K-frame by the perturbation of a bounded linear operator T. Finally, we study the stability of K-frames under some perturbations.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A study on the sum of K-frames in n-Hilbert space
    Wang, Gang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (01)
  • [22] PERTURBATION OF CONTINUOUS FRAMES ON QUATERNIONIC HILBERT SPACES
    Hokulan, M. K.
    Hirulogasanthar, K.
    OPERATORS AND MATRICES, 2024, 18 (02): : 295 - 296
  • [23] SOME CONSTRUCTIONS OF K-FRAMES AND THEIR DUALS
    Neyshaburi, Fahimeh Arabyani
    Arefijamaal, Ali Akbar
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (06) : 1749 - 1764
  • [24] On some equalities and inequalities for k-frames
    Fahimeh Arabyani Neyshaburi
    Ghadir Mohajeri Minaei
    Ehsan Anjidani
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 297 - 308
  • [25] Dual and canonical dual K-Bessel sequences in quaternionic Hilbert spaces
    Hanen Ellouz
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [26] Dual and canonical dual K-Bessel sequences in quaternionic Hilbert spaces
    Ellouz, Hanen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [27] S-spectrum and associated continuous frames on quaternionic Hilbert spaces
    Khokulan, M.
    Thirulogasanthar, K.
    Muraleetharan, B.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 107 - 122
  • [28] Some Inequalities for Selfadjoint Operators on Quaternionic Hilbert Spaces
    Mandipour, S.
    Niknam, A.
    Fashandi, M.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (01)
  • [29] Some Inequalities for Selfadjoint Operators on Quaternionic Hilbert Spaces
    S. Mahdipour
    A. Niknam
    M. Fashandi
    Advances in Applied Clifford Algebras, 2020, 30
  • [30] OPERATOR REPRESENTATIONS OF K-FRAMES: BOUNDEDNESS AND STABILITY
    He, Miao
    Leng, Jinsong
    Li, Dongwei
    Xu, Yuxiang
    OPERATORS AND MATRICES, 2020, 14 (04): : 921 - 934