Sequentially additive nonignorable missing data modelling using auxiliary marginal information

被引:10
|
作者
Sadinle, Mauricio [1 ]
Reiter, Jerome P. [2 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Duke Univ, Dept Stat Sci, 214 Old Chem Bldg, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Information projection; Missing not at random; Nonmonotone nonresponse; Nonparametric identification; Observational equivalence; PANEL-DATA; ATTRITION; PROBABILITY; INFERENCE; DISTRIBUTIONS; MINIMIZATION; IMPUTATION; SELECTION; BINARY; SAMPLE;
D O I
10.1093/biomet/asz054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a class of missingness mechanisms, referred to as sequentially additive nonignorable, for modelling multivariate data with item nonresponse. These mechanisms explicitly allow the probability of nonresponse for each variable to depend on the value of that variable, thereby representing nonignorable missingness mechanisms. These missing data models are identified by making use of auxiliary information on marginal distributions, such as marginal probabilities for multivariate categorical variables or moments for numeric variables. We prove identification results and illustrate the use of these mechanisms in an application.
引用
收藏
页码:889 / 911
页数:23
相关论文
共 19 条
  • [1] A novel semiparametric approach to nonignorable missing data by catching covariate marginal information
    Cheng, Manli
    Liu, Yukun
    Qin, Jing
    SCANDINAVIAN JOURNAL OF STATISTICS, 2025,
  • [2] Leveraging auxiliary information on marginal distributions in nonignorable models for item and unit nonresponse
    Akande, Olanrewaju
    Madson, Gabriel
    Hillygus, D. Sunshine
    Reiter, Jerome P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2021, 184 (02) : 643 - 662
  • [3] Optimal imputation of the missing data using multi auxiliary information
    Bhushan, Shashi
    Pandey, Abhay Pratap
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 449 - 477
  • [4] Optimal imputation of the missing data using multi auxiliary information
    Shashi Bhushan
    Abhay Pratap Pandey
    Computational Statistics, 2021, 36 : 449 - 477
  • [5] Estimation methods for marginal and association parameters for longitudinal binary data with nonignorable missing observations
    Li, Haocheng
    Yi, Grace Y.
    STATISTICS IN MEDICINE, 2013, 32 (05) : 833 - 848
  • [6] Distribution estimation with auxiliary information for missing data
    Liu, Xu
    Liu, Peixin
    Zhou, Yong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 711 - 724
  • [7] Imputation of missing data using multi auxiliary information under ranked set sampling
    Bhushan, Shashi
    Kumar, Anoop
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, : 1500 - 1521
  • [8] CATEGORICAL DATA FUSION USING AUXILIARY INFORMATION
    Fosdick, Bailey K.
    DeYoreo, Maria
    Reiter, Jerome P.
    Annals of Applied Statistics, 2016, 10 (04) : 1907 - 1929
  • [9] Feature selection with missing data using mutual information estimators
    Doquire, Gauthier
    Verleysen, Michel
    NEUROCOMPUTING, 2012, 90 : 3 - 11
  • [10] How to handle missing data in regression models using information criteria
    Kuiper, Rebecca M.
    Hoijtink, Herbert
    STATISTICA NEERLANDICA, 2011, 65 (04) : 489 - 506