Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel

被引:116
|
作者
Bertoli, Umberto Scipioni [1 ]
MacDonald, Benjamin E. [1 ]
Schoenung, Julie M. [1 ]
机构
[1] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2019年 / 739卷
基金
美国国家科学基金会;
关键词
Powder bed fusion additive manufacturing; Selective Laser Melting; 316L stainless steel; Directional solidification; Microstructure control; PROCESS PARAMETERS; HEAT; TITANIUM; COLUMNAR; IN738LC; NICKEL; GROWTH; PARTS;
D O I
10.1016/j.msea.2018.10.051
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser powder bed fusion additive manufacturing (L-PBF AM) offers great potential for local microstructure control. During this process, solidification occurs in conditions that are far from equilibrium and possesses in the majority of cases a strong directionality. In general, the size and morphology of the resulting microstructure is a function of two well-known parameters: the temperature gradient within the liquid phase (G) and the velocity of the solidification front (R). To provide guidance in selecting appropriate, systematically defined, process parameters for L-PBF of 316L stainless steel square pillars, we developed an intentionally simple thermal model to express these two parameters, G and R, as a function of selected process variables (laser scan speed, laser power) and material properties (thermal diffusivity). Results from both microstructural and mechanical characterization of the pillars indicate that high-strength, fully-dense parts with a highly oriented cellular microstructure can be obtained when using significantly different sets of process parameters. Furthermore, despite its simplicity, the numerical model correlates well with experimental evidence and confirms that rather than creating variable microstructures, the process parameter constraints actually lead to a stable cellular microstructure regardless of the wide process window studied.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条
  • [41] Effect of laser scan pattern in laser powder bed fusion process : The case of 316L stainless steel
    Roirand, Hugo
    Malard, Benoit
    Hor, Anis
    Saintier, Nicolas
    9TH EDITION OF THE INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2021, 2022, 38 : 149 - 158
  • [42] Local valence analysis of 316L austenitic stainless steel produced by laser powder bed fusion
    Sato, Kazuhisa
    Takagi, Shunya
    Ichikawa, Satoshi
    Ishimoto, Takuya
    Nakano, Takayoshi
    MATERIALS LETTERS, 2024, 372
  • [43] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Ali Eliasu
    Aleksander Czekanski
    Solomon Boakye-Yiadom
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 2651 - 2669
  • [44] Tailoring the microstructural and mechanical properties of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Cheng-song
    Wang, Yong
    Zhang, Hua
    Li, Lie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 7389 - 7405
  • [45] Benchmarking of Print Properties and Microstructures of 316L Stainless Steel Laser Powder Bed Fusion Prints
    Gallant, Lucas
    Hsiao, Amy
    McSorley, Grant
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (09) : 4193 - 4202
  • [46] Two-steps electrochemical polishing of laser powder bed fusion 316l stainless steel
    Zhu, Haitao
    Rennie, Allan
    Li, Ruifeng
    Tian, Yingtao
    SURFACES AND INTERFACES, 2022, 35
  • [47] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Eliasu, Ali
    Czekanski, Aleksander
    Boakye-Yiadom, Solomon
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (9-10): : 2651 - 2669
  • [48] Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review
    Ahmed, N.
    Barsoum, I.
    Haidemenopoulos, G.
    Abu Al-Rub, R. K.
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 75 : 415 - 434
  • [49] Nanoindentation and electron backscatter diffraction mapping in laser powder bed fusion of stainless steel 316L
    Uddin, Mohammad Jashim
    Ramirez-Cedillo, Erick
    Mirshams, Reza A.
    Siller, Hector R.
    MATERIALS CHARACTERIZATION, 2021, 174
  • [50] Numerical model of heat transfer during laser powder bed fusion of 316L stainless steel
    Bryce Cox
    Milad Ghayoor
    Ryan P. Doyle
    Somayeh Pasebani
    Joshua Gess
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 5715 - 5725