Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel

被引:127
作者
Bertoli, Umberto Scipioni [1 ]
MacDonald, Benjamin E. [1 ]
Schoenung, Julie M. [1 ]
机构
[1] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2019年 / 739卷
基金
美国国家科学基金会;
关键词
Powder bed fusion additive manufacturing; Selective Laser Melting; 316L stainless steel; Directional solidification; Microstructure control; PROCESS PARAMETERS; HEAT; TITANIUM; COLUMNAR; IN738LC; NICKEL; GROWTH; PARTS;
D O I
10.1016/j.msea.2018.10.051
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser powder bed fusion additive manufacturing (L-PBF AM) offers great potential for local microstructure control. During this process, solidification occurs in conditions that are far from equilibrium and possesses in the majority of cases a strong directionality. In general, the size and morphology of the resulting microstructure is a function of two well-known parameters: the temperature gradient within the liquid phase (G) and the velocity of the solidification front (R). To provide guidance in selecting appropriate, systematically defined, process parameters for L-PBF of 316L stainless steel square pillars, we developed an intentionally simple thermal model to express these two parameters, G and R, as a function of selected process variables (laser scan speed, laser power) and material properties (thermal diffusivity). Results from both microstructural and mechanical characterization of the pillars indicate that high-strength, fully-dense parts with a highly oriented cellular microstructure can be obtained when using significantly different sets of process parameters. Furthermore, despite its simplicity, the numerical model correlates well with experimental evidence and confirms that rather than creating variable microstructures, the process parameter constraints actually lead to a stable cellular microstructure regardless of the wide process window studied.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 35 条
[1]  
[Anonymous], P INT C APPL LASER E
[2]  
Bertoli U. Scipioni, 2017, MAT DES
[3]   Selective laser melting of aluminum die-cast alloy-Correlations between process parameters, solidification conditions, and resulting mechanical properties [J].
Buchbinder, D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
JOURNAL OF LASER APPLICATIONS, 2015, 27
[4]   Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling [J].
Chen, Yuan ;
Lu, Fenggui ;
Zhang, Ke ;
Nie, Pulin ;
Hosseini, Seyed Reza Elmi ;
Feng, Kai ;
Li, Zhuguo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 670 :312-321
[5]   Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J].
Cherry, J. A. ;
Davies, H. M. ;
Mehmood, S. ;
Lavery, N. P. ;
Brown, S. G. R. ;
Sienz, J. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (5-8) :869-879
[6]   Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy Mar-M509 produced by selective laser melting [J].
Cloots, Michael ;
Kunze, Karsten ;
Uggowitzer, Peter J. ;
Wegener, Konrad .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 658 :68-76
[7]   Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J].
Cloots, Michael ;
Uggowitzer, Peter J. ;
Wegener, Konrad .
MATERIALS & DESIGN, 2016, 89 :770-784
[8]   Initiation and growth mechanisms for weld solidification cracking [J].
Coniglio, N. ;
Cross, C. E. .
INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (07) :375-397
[9]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[10]   Site specific control of crystallographic grain orientation through electron beam additive manufacturing [J].
Dehoff, R. R. ;
Kirka, M. M. ;
Sames, W. J. ;
Bilheux, H. ;
Tremsin, A. S. ;
Lowe, L. E. ;
Babu, S. S. .
MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (08) :931-938