Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress

被引:87
|
作者
Sun, Caixia [1 ]
Gao, Xiaoxiao [1 ]
Fu, Jianqi [1 ]
Zhou, Jiahao [1 ]
Wu, Xiaofei [1 ]
机构
[1] Northeastern Univ, Coll Life & Hlth Sci, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
Zea mays L; Combination stress; Water deficiency; High salinity; Metabolomics; INDUCED WATER-STRESS; ABIOTIC STRESS; ARABIDOPSIS-THALIANA; OXIDATIVE STRESS; NATURAL VARIATION; SALINITY STRESS; GAS-EXCHANGE; MECHANISMS; NITROGEN; GROWTH;
D O I
10.1007/s11104-014-2309-0
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize is exposed to the combined stresses of water deficiency and soil salinity within its natural habitat, particularly in irrigated and dry land agricultural areas. Hence, the effect of these combined stresses on the metabolic response of maize plants was determined to improve understanding of stress tolerance mechanisms of maize in the field. Maize plants were either singly or simultaneously exposed to soil water deficiency and high salinity for 7 d. Physiological characteristics were analyzed and metabolic changes were quantified by conducting H-1 NMR-based analysis of polar and non-polar fractions of maize leaf extracts. The response of maize plants to the combined stresses was distinct from that of plants subjected to either drought stress or salt stress alone at both the metabolic and physiological level. Maize plants showed a new pattern of metabolic response to the combined stresses. Some metabolites specifically responded to combined stresses and differed from those caused by each stress applied individually. The global metabolic response of maize to the combined stresses was related to the physiological processes. Our results provide valuable insights into the response of maize to combined drought and salt stress by linking stress-related physiological responses to changes in metabolites.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条
  • [21] Transcriptome response of maize (Zea mays L.) seedlings to heat stress
    Li, Zhong-Guang
    Ye, Xin-Yu
    PROTOPLASMA, 2022, 259 (02) : 357 - 369
  • [22] Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.)
    Naz, Rabia
    Sarfraz, Amina
    Anwar, Zahid
    Yasmin, Humaira
    Nosheen, Asia
    Keyani, Rumana
    Roberts, Thomas H.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 159 : 285 - 300
  • [23] EFFECT OF POTASSIUM APPLICATION ON AMMONIUM NUTRITION IN MAIZE (Zea mays L.) UNDER SALT STRESS
    Yousra, Munazza
    Akhtar, Javaid
    Saqib, Zulfiqar A.
    Saqib, M.
    Haq, M. A.
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2013, 50 (01): : 43 - 48
  • [24] Physiological markers for drought tolerance in maize (Zea mays L.)
    Zarco-Perelló, E
    González-Hernández, VA
    López-Peralta, MC
    Salinas-Moreno, Y
    AGROCIENCIA, 2005, 39 (05) : 517 - 528
  • [25] Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress
    Akhtar, Tasneem
    Zia-ur-Rehman, Muhammad
    Naeem, Asif
    Nawaz, Rab
    Ali, Shafaqat
    Murtaza, Ghulam
    Maqsood, Muhammad Aamer
    Azhar, Muhammad
    Khalid, Hinnan
    Rizwan, Muhammad
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (06) : 5521 - 5529
  • [26] Response of Bambara groundnut (Vigna subterranean L.) and Maize (Zea mays L.) to heavy metal stress
    Oladele, E. O.
    Adewumi, O. O.
    Yahaya, T.
    Taiwo, I. A.
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2019, 8 (01)
  • [27] Selection of various synthetic Maize (Zea mays L.) genotypes on drought stress condition
    Farid, M.
    Musa, Y.
    Nasaruddin
    Ridwan, I.
    1ST INTERNATIONAL CONFERENCE ON GLOBAL ISSUE FOR INFRASTRUCTURE, ENVIRONMENT & SOCIO-ECONOMIC DEVELOPMENT, 2019, 235
  • [28] Case study of a biological control: Geobacillus caldoxylosilyticus (IRD) contributes to alleviate salt stress in maize (Zea mays L.) plants
    Abdelkader, Amal Fadl
    Esawy, Mona Abdeltawab
    ACTA PHYSIOLOGIAE PLANTARUM, 2011, 33 (06) : 2289 - 2299
  • [29] Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings
    Guo, Rui
    Shi, LianXuan
    Yan, Changrong
    Zhong, Xiuli
    Gu, FengXue
    Liu, Qi
    Xia, Xu
    Li, Haoru
    BMC PLANT BIOLOGY, 2017, 17
  • [30] Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
    Zhu, Jinming
    Brown, Kathleen M.
    Lynch, Jonathan P.
    PLANT CELL AND ENVIRONMENT, 2010, 33 (05) : 740 - 749