Deep Learning-Based Named Entity Recognition and Knowledge Graph Construction for Geological Hazards

被引:56
|
作者
Fan, Runyu [1 ,2 ]
Wang, Lizhe [1 ,2 ]
Yan, Jining [1 ,2 ]
Song, Weijing [1 ,2 ]
Zhu, Yingqian [1 ,2 ]
Chen, Xiaodao [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
named entity recognition; knowledge graph; deep learning; geological hazards; NEURAL-NETWORKS;
D O I
10.3390/ijgi9010015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constructing a knowledge graph of geological hazards literature can facilitate the reuse of geological hazards literature and provide a reference for geological hazard governance. Named entity recognition (NER), as a core technology for constructing a geological hazard knowledge graph, has to face the challenges that named entities in geological hazard literature are diverse in form, ambiguous in semantics, and uncertain in context. This can introduce difficulties in designing practical features during the NER classification. To address the above problem, this paper proposes a deep learning-based NER model; namely, the deep, multi-branch BiGRU-CRF model, which combines a multi-branch bidirectional gated recurrent unit (BiGRU) layer and a conditional random field (CRF) model. In an end-to-end and supervised process, the proposed model automatically learns and transforms features by a multi-branch bidirectional GRU layer and enhances the output with a CRF layer. Besides the deep, multi-branch BiGRU-CRF model, we also proposed a pattern-based corpus construction method to construct the corpus needed for the deep, multi-branch BiGRU-CRF model. Experimental results indicated the proposed deep, multi-branch BiGRU-CRF model outperformed state-of-the-art models. The proposed deep, multi-branch BiGRU-CRF model constructed a large-scale geological hazard literature knowledge graph containing 34,457 entities nodes and 84,561 relations.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Extracting Named Entity Using Entity Labeling in Geological Text Using Deep Learning Approach
    Qiu, Qinjun
    Tian, Miao
    Xie, Zhong
    Tan, Yongjian
    Ma, Kai
    Wang, Qingfang
    Pan, Shengyong
    Tao, Liufeng
    JOURNAL OF EARTH SCIENCE, 2023, 34 (05) : 1406 - 1417
  • [32] KGNER: Improving Chinese Named Entity Recognition by BERT Infused with the Knowledge Graph
    Hu, Weiwei
    He, Liang
    Ma, Hanhan
    Wang, Kai
    Xiao, Jingfeng
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [33] Named Entity Recognition in Threat Intelligence Domain Based on Deep Learning
    Wang Y.
    Wang Z.-H.
    Li H.
    Huang W.-J.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2023, 44 (01): : 33 - 39
  • [34] Research on named entity recognition of adverse drug reactions based on NLP and deep learning
    Wei, Jianxiang
    Hu, Tianling
    Dai, Jimin
    Wang, Ziren
    Han, Pu
    Huang, Weidong
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [35] Deep learning for named entity recognition in extracting critical information from struck-by accidents in construction
    Zhou, Zhipeng
    Wei, Lixuan
    Luan, Haiying
    AUTOMATION IN CONSTRUCTION, 2025, 173
  • [36] Named Entity Recognition for Amharic Using Deep Learning
    Gamback, Bjorn
    Sikdar, Utpal Kumar
    2017 IST-AFRICA WEEK CONFERENCE (IST-AFRICA), 2017,
  • [37] Deep learning-based mineral exploration named entity recognition: A case study of granitic pegmatite-type lithium deposits
    Tao, Jintao
    Zhang, Nannan
    Chang, Jinyu
    Chen, Li
    Zhang, Hao
    Liao, Shibin
    Li, Siyuan
    ORE GEOLOGY REVIEWS, 2024, 175
  • [38] Deep Learning Architectures for Named Entity Recognition: A Survey
    Thomas, Anu
    Sangeetha, S.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 215 - 225
  • [39] Survey on Chinese named entity recognition with deep learning
    Kang Y.
    Sun L.
    Zhu R.
    Li M.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (11): : 44 - 53
  • [40] Active Learning-Based Approach for Named Entity Recognition on Short Text Streams
    Cuong Van Tran
    Tuong Tri Nguyen
    Dinh Tuyen Hoang
    Hwang, Dosam
    Ngoc Thanh Nguyen
    MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, MISSI 2016, 2017, 506 : 321 - 330