Deep Learning-Based Named Entity Recognition and Knowledge Graph Construction for Geological Hazards

被引:56
|
作者
Fan, Runyu [1 ,2 ]
Wang, Lizhe [1 ,2 ]
Yan, Jining [1 ,2 ]
Song, Weijing [1 ,2 ]
Zhu, Yingqian [1 ,2 ]
Chen, Xiaodao [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
named entity recognition; knowledge graph; deep learning; geological hazards; NEURAL-NETWORKS;
D O I
10.3390/ijgi9010015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constructing a knowledge graph of geological hazards literature can facilitate the reuse of geological hazards literature and provide a reference for geological hazard governance. Named entity recognition (NER), as a core technology for constructing a geological hazard knowledge graph, has to face the challenges that named entities in geological hazard literature are diverse in form, ambiguous in semantics, and uncertain in context. This can introduce difficulties in designing practical features during the NER classification. To address the above problem, this paper proposes a deep learning-based NER model; namely, the deep, multi-branch BiGRU-CRF model, which combines a multi-branch bidirectional gated recurrent unit (BiGRU) layer and a conditional random field (CRF) model. In an end-to-end and supervised process, the proposed model automatically learns and transforms features by a multi-branch bidirectional GRU layer and enhances the output with a CRF layer. Besides the deep, multi-branch BiGRU-CRF model, we also proposed a pattern-based corpus construction method to construct the corpus needed for the deep, multi-branch BiGRU-CRF model. Experimental results indicated the proposed deep, multi-branch BiGRU-CRF model outperformed state-of-the-art models. The proposed deep, multi-branch BiGRU-CRF model constructed a large-scale geological hazard literature knowledge graph containing 34,457 entities nodes and 84,561 relations.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A deep learning-based method for deep information extraction from multimodal data for geological reports to support geological knowledge graph construction
    Chen, Yan
    Tian, Miao
    Wu, Qirui
    Tao, Liufeng
    Jiang, Tingyao
    Qiu, Qinjun
    Huang, Hua
    EARTH SCIENCE INFORMATICS, 2024, 17 (03) : 1867 - 1887
  • [2] Named entity recognition based on deep learning
    Ji Z.
    Kong D.
    Liu W.
    Dong W.
    Sang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (06): : 1603 - 1615
  • [3] A Chinese named entity recognition method for landslide geological disasters based on deep learning
    Yang, Banghui
    Zhou, Chunlei
    Li, Suju
    Wang, Yuzhu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [4] Named Entity Recognition Method for Fault Knowledge based on Deep Learning
    Chen, Zhicheng
    Liu, Xiaobao
    Yin, Yanchao
    Lu, Hongbiao
    ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 1 - 4
  • [5] Supporting Deep Learning-Based Named Entity Recognition Using Cloud Resource Management
    Hartmann, Benedict
    Tamla, Philippe
    Hemmje, Matthias
    HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023, PT VI, 2023, 14059 : 84 - 100
  • [6] Multi-feature fusion named entity recognition method for grape knowledge graph construction
    Nie X.
    Zhang L.
    Niu D.
    Wu H.
    Zhu H.
    Zhang H.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (03): : 201 - 210
  • [7] Medical Named Entity Recognition Model Based on Knowledge Graph Enhancement
    Lu, Yonghe
    Zhao, Ruijie
    Wen, Xiuxian
    Tong, Xinyu
    Xiang, Dingcheng
    Zhang, Jinxia
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (04)
  • [8] Military Named Entity Recognition Method Based on Deep Learning
    Wang, Xuefeng
    Yang, Ruopeng
    Lu, Yiwei
    Wu, Qingfeng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 479 - 483
  • [9] A Survey on Deep Learning for Named Entity Recognition
    Li, Jing
    Sun, Aixin
    Han, Jianglei
    Li, Chenliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 50 - 70
  • [10] Deep learning for named entity recognition: a survey
    Hu Z.
    Hou W.
    Liu X.
    Neural Comput. Appl., 16 (8995-9022): : 8995 - 9022