Characterizing (l, m)-walk-regular graphs

被引:11
作者
Dalfo, C. [1 ]
Fiol, M. A. [1 ]
Garriga, E.
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, ES-08034 Barcelona, Catalonia, Spain
关键词
Distance-regular graph; Walk-regular graph; Adjacency matrix; Spectrum; Predistance polynomial; Preintersection number; ADJACENCY POLYNOMIALS;
D O I
10.1016/j.laa.2010.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G with diameter D and d + 1 distinct eigenvalues is said to be (l, m)-walk-regular, for some integers l is an element of [0,d] and m is an element of [0,D], l >= m, if the number of walks of length i is an element of[0,l] between any pair of vertices at distance j is an element of [0, m] depends only on the values of i and j. In this paper, we study some algebraic and combinatorial characterizations of (l, m)-walk-regularity based on the so-called predistance polynomials and the preintersection numbers. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1821 / 1826
页数:6
相关论文
共 50 条
  • [41] Distance regular graphs in which local subgraphs are strongly regular graphs with the second eigenvalue at most 3
    Makhnev, A. A.
    Paduchikh, D. V.
    [J]. DOKLADY MATHEMATICS, 2015, 92 (02) : 568 - 571
  • [42] On the distance spectrum of distance regular graphs
    Atik, Fouzul
    Panigrahi, Pratima
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 478 : 256 - 273
  • [43] Completely regular clique graphs, II
    Hiroshi Suzuki
    [J]. Journal of Algebraic Combinatorics, 2016, 43 : 417 - 445
  • [44] On outindependent subgraphs of strongly regular graphs
    Fiol, MA
    Garriga, E
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (02) : 123 - 140
  • [45] On quasi-strongly regular graphs
    Goldberg, Felix
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (06) : 437 - 451
  • [46] The spectrum of infinite regular line graphs
    Shirai, T
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) : 115 - 132
  • [47] CONSTRUCTION OF COSPECTRAL INTEGRAL REGULAR GRAPHS
    Bapat, Ravindra B.
    Karimi, Masoud
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 595 - 609
  • [48] Linear Programming Bounds for Regular Graphs
    Hiroshi Nozaki
    [J]. Graphs and Combinatorics, 2015, 31 : 1973 - 1984
  • [49] On a class of strongly regular signed graphs
    Koledin, Tamara
    Stanic, Zoran
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4): : 353 - 365
  • [50] Tight Distance-Regular Graphs
    Aleksandar Jurišić
    Jack Koolen
    Paul Terwilliger
    [J]. Journal of Algebraic Combinatorics, 2000, 12 : 163 - 197