Characterizing (l, m)-walk-regular graphs

被引:11
作者
Dalfo, C. [1 ]
Fiol, M. A. [1 ]
Garriga, E.
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, ES-08034 Barcelona, Catalonia, Spain
关键词
Distance-regular graph; Walk-regular graph; Adjacency matrix; Spectrum; Predistance polynomial; Preintersection number; ADJACENCY POLYNOMIALS;
D O I
10.1016/j.laa.2010.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G with diameter D and d + 1 distinct eigenvalues is said to be (l, m)-walk-regular, for some integers l is an element of [0,d] and m is an element of [0,D], l >= m, if the number of walks of length i is an element of[0,l] between any pair of vertices at distance j is an element of [0, m] depends only on the values of i and j. In this paper, we study some algebraic and combinatorial characterizations of (l, m)-walk-regularity based on the so-called predistance polynomials and the preintersection numbers. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1821 / 1826
页数:6
相关论文
共 50 条
  • [31] Completely regular clique graphs
    Suzuki, Hiroshi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 233 - 244
  • [32] Distance-regular graphs
    van Dam, Edwin R.
    Koolen, Jack H.
    Tanaka, Hajime
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, : 1 - 156
  • [33] ON Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS Γ WITH STRONGLY REGULAR GRAPHS Γ2 AND Γ3
    Belousov, Ivan Nikolaevich
    Makhnev, Aleksandr Alekseevich
    Nirova, Marina Sefovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1385 - 1392
  • [34] Regular factors of simple regular graphs and factor-spectra
    Niessen, T
    Randerath, B
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 89 - 103
  • [35] Star complementary strongly regular decompositions of strongly regular graphs
    Stanic, Z.
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (12) : 2448 - 2461
  • [36] 2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs
    West, Douglas B.
    Zhu, Xuding
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [37] On small distance-regular graphs with the intersection arrays {mn - 1, (m - 1)(n
    Makhnev, Aleksandr A.
    Golubyatnikov, Mikhail P.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (05) : 273 - 281
  • [38] The Koolen-Park Boundary and Distance-Regular Graphs without m-Claws
    Makhnev, A. A.
    Guo, Wenbin
    Efimov, K. S.
    RUSSIAN MATHEMATICS, 2022, 66 (09) : 54 - 57
  • [39] Distance regular graphs in which local subgraphs are strongly regular graphs with the second eigenvalue at most 3
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2015, 92 : 568 - 571
  • [40] 2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs
    Douglas B. West
    Xuding Zhu
    Graphs and Combinatorics, 2023, 39