共 50 条
Characterizing (l, m)-walk-regular graphs
被引:11
|作者:
Dalfo, C.
[1
]
Fiol, M. A.
[1
]
Garriga, E.
机构:
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 4, ES-08034 Barcelona, Catalonia, Spain
关键词:
Distance-regular graph;
Walk-regular graph;
Adjacency matrix;
Spectrum;
Predistance polynomial;
Preintersection number;
ADJACENCY POLYNOMIALS;
D O I:
10.1016/j.laa.2010.06.042
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A graph G with diameter D and d + 1 distinct eigenvalues is said to be (l, m)-walk-regular, for some integers l is an element of [0,d] and m is an element of [0,D], l >= m, if the number of walks of length i is an element of[0,l] between any pair of vertices at distance j is an element of [0, m] depends only on the values of i and j. In this paper, we study some algebraic and combinatorial characterizations of (l, m)-walk-regularity based on the so-called predistance polynomials and the preintersection numbers. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1821 / 1826
页数:6
相关论文