The convex dimension of a graph

被引:10
作者
Halman, Nir [1 ]
Onn, Shmuel
Rothbjum, Uriel G.
机构
[1] MIT, Cambridge, MA 02138 USA
[2] Technion Israel Inst Technol, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
graph embedding; discrete geometry; convex combinatorial optimization;
D O I
10.1016/j.dam.2007.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convex dimension of a graph G = (V, E) is the smallest dimension d for which G admits an injective map f : V -> R-d of its vertices into d-space, such that the barycenters of the images of the edges of G are in convex position. The strong convex dimension of G is the smallest d for which G admits a map as above such that the images of the vertices of G are also in convex position. In this paper we study the convex and strong convex dimensions of graphs. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1373 / 1383
页数:11
相关论文
共 4 条
[1]  
Eckhoff J., 1993, HDB CONVEX GEOMETRY
[2]   Convex combinatorial optimization [J].
Onn, S ;
Rothblum, UG .
DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) :549-566
[3]  
Onn Shmuel, 1994, BEITR ALGEBRA GEOM, V35, P125
[4]  
Ziegler G.M., 1995, Lectures on polytopes, Graduate Texts in Mathematics, V152