Feature-versus deep learning-based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study

被引:14
作者
Raghavendra, U. [1 ]
Gudigar, Anjan [1 ]
Rao, Tejaswi N. [1 ]
Rajinikanth, V [2 ]
Ciaccio, Edward J. [3 ]
Yeong, Chai Hong [4 ]
Satapathy, Suresh Chandra [5 ]
Molinari, Filippo [6 ]
Acharya, U. Rajendra [7 ,8 ,9 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Instrumentat & Control Engn, Manipal 576104, India
[2] St Josephs Coll Engn, Dept Elect & Instrumentat Engn, Chennai, Tamil Nadu, India
[3] Columbia Univ, Dept Med, Med Ctr, New York, NY USA
[4] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Lakeside Campus, Subang Jaya, Malaysia
[5] Kalinga Inst Ind Technol, Sch Comp Engn, Bhubaneswar, India
[6] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[7] Ngee Ann Polytech, Sch Engn, Singapore, Singapore
[8] Asia Univ, Dept Biomed Informat & Med Engn, Taichung, Taiwan
[9] Kumamoto Univ, Int Res Org Adv Sci & Technol IROAST, Kumamoto, Japan
关键词
brain tumor; classification; deep learning; elongated quinary patterns; glioblastoma; texture features; NEURAL-NETWORK; GLIOMAS; SELECTION; CLASSIFICATION; SEGMENTATION; COMBINATION; SURVIVAL; SYSTEM; EDEMA; GRADE;
D O I
10.1002/ima.22646
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The public health is significantly affected by development of brain tumors in human patients. Glioblastoma (GBM) is a relatively common, malignant form of brain tumor, which is currently challenging to treat and cure. In contrast, Lower Grade Gliomas (LGGs) originate from glial cells and can mostly be treated and cured in the initial stages if they are detected early. A computer-aided diagnostics (CAD) tool may help to test for the presence and extent of any such tumor, and thus can be assistive in the clinical diagnostic process. Herein, we compare handcrafted versus non-handcrafted features-based CAD to characterize GBM and LGG. Our machine learning-based handcrafted model uses quantitative techniques of enhanced elongated quinary patterns and entropies analysis. We have also developed a non-handcrafted deep learning model using Visual Geometry Group-16 architecture for segregating GBM and LGG subjects results in 94.25% accuracy using k-nearest neighbor classifier.
引用
收藏
页码:501 / 516
页数:16
相关论文
共 58 条
[41]   Radiomics: the facts and the challenges of image analysis [J].
Rizzo S. ;
Botta F. ;
Raimondi S. ;
Origgi D. ;
Fanciullo C. ;
Morganti A.G. ;
Bellomi M. .
European Radiology Experimental, 2 (1)
[42]   Recent developments and future directions in adult lower-grade gliomas: Society for Neuro-Oncology (SNO) and European Association of Neuro-Oncology (EANO) consensus [J].
Schiff, David ;
Van den Bent, Martin ;
Vogelbaum, Michael A. ;
Wick, Wolfgang ;
Miller, C. Ryan ;
Taphoorn, Martin ;
Pope, Whitney ;
Brown, Paul D. ;
Platten, Michael ;
Jalali, Rakesh ;
Armstrong, Terri ;
Wen, Patrick Y. .
NEURO-ONCOLOGY, 2019, 21 (07) :837-853
[43]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[44]   Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images [J].
Sharif, Muhammad Irfan ;
Li, Jian Ping ;
Khan, Muhammad Attique ;
Saleem, Muhammad Asim .
PATTERN RECOGNITION LETTERS, 2020, 129 :181-189
[45]  
Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, 10.48550/arXiv.1409.1556, DOI 10.48550/ARXIV.1409.1556]
[46]   A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease [J].
Spasov, Simeon ;
Passamonti, Luca ;
Duggento, Andrea ;
Lio, Pietro ;
Toschi, Nicola .
NEUROIMAGE, 2019, 189 :276-287
[47]   PROBABILISTIC NEURAL NETWORKS [J].
SPECHT, DF .
NEURAL NETWORKS, 1990, 3 (01) :109-118
[48]  
Srivastava S., 2020, SN Comput. Sci., V1, P81, DOI [10.1007/s42979-020-0109-6, DOI 10.1007/S42979-020-0109-6]
[49]   Application of deep transfer learning for automated brain abnormality classification using MR images [J].
Talo, Muhammed ;
Baloglu, Ulas Baran ;
Yildirim, Ozal ;
Acharya, U. Rajendra .
COGNITIVE SYSTEMS RESEARCH, 2019, 54 :176-188
[50]   Age-related Macular Degeneration detection using deep convolutional neural network [J].
Tan, Jen Hong ;
Bhandary, Sulatha V. ;
Sivaprasad, Sobha ;
Hagiwara, Yuki ;
Bagchi, Akanksha ;
Raghavendra, U. ;
Rao, A. Krishna ;
Raju, Biju ;
Shetty, Nitin Shridhara ;
Gertych, Arkadiusz ;
Chua, Kuang Chua ;
Acharya, U. Rajendra .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 :127-135