Feature-versus deep learning-based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study

被引:14
作者
Raghavendra, U. [1 ]
Gudigar, Anjan [1 ]
Rao, Tejaswi N. [1 ]
Rajinikanth, V [2 ]
Ciaccio, Edward J. [3 ]
Yeong, Chai Hong [4 ]
Satapathy, Suresh Chandra [5 ]
Molinari, Filippo [6 ]
Acharya, U. Rajendra [7 ,8 ,9 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Instrumentat & Control Engn, Manipal 576104, India
[2] St Josephs Coll Engn, Dept Elect & Instrumentat Engn, Chennai, Tamil Nadu, India
[3] Columbia Univ, Dept Med, Med Ctr, New York, NY USA
[4] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Lakeside Campus, Subang Jaya, Malaysia
[5] Kalinga Inst Ind Technol, Sch Comp Engn, Bhubaneswar, India
[6] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[7] Ngee Ann Polytech, Sch Engn, Singapore, Singapore
[8] Asia Univ, Dept Biomed Informat & Med Engn, Taichung, Taiwan
[9] Kumamoto Univ, Int Res Org Adv Sci & Technol IROAST, Kumamoto, Japan
关键词
brain tumor; classification; deep learning; elongated quinary patterns; glioblastoma; texture features; NEURAL-NETWORK; GLIOMAS; SELECTION; CLASSIFICATION; SEGMENTATION; COMBINATION; SURVIVAL; SYSTEM; EDEMA; GRADE;
D O I
10.1002/ima.22646
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The public health is significantly affected by development of brain tumors in human patients. Glioblastoma (GBM) is a relatively common, malignant form of brain tumor, which is currently challenging to treat and cure. In contrast, Lower Grade Gliomas (LGGs) originate from glial cells and can mostly be treated and cured in the initial stages if they are detected early. A computer-aided diagnostics (CAD) tool may help to test for the presence and extent of any such tumor, and thus can be assistive in the clinical diagnostic process. Herein, we compare handcrafted versus non-handcrafted features-based CAD to characterize GBM and LGG. Our machine learning-based handcrafted model uses quantitative techniques of enhanced elongated quinary patterns and entropies analysis. We have also developed a non-handcrafted deep learning model using Visual Geometry Group-16 architecture for segregating GBM and LGG subjects results in 94.25% accuracy using k-nearest neighbor classifier.
引用
收藏
页码:501 / 516
页数:16
相关论文
共 58 条
[1]   ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 107 (02) :233-241
[2]   Multi-gradient features and elongated quinary pattern encoding for image-based facial expression recognition [J].
Al-Sumaidaee, S. A. M. ;
Abdullah, M. A. M. ;
Al-Nima, R. R. O. ;
Dlay, S. S. ;
Chambers, J. A. .
PATTERN RECOGNITION, 2017, 71 :249-263
[3]  
[Anonymous], 2004, Discovering Knowledge in Data: An Introduction to Data Mining"
[4]   ASSESSMENT OF THE PATHOLOGICAL GRADE OF ASTROCYTIC GLIOMAS USING AN MRI SCORE [J].
ASARI, S ;
MAKABE, T ;
KATAYAMA, S ;
ITOH, T ;
TSUCHIDA, S ;
OHMOTO, T .
NEURORADIOLOGY, 1994, 36 (04) :308-310
[5]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[6]   Deep-learning framework to detect lung abnormality - A study with chest X-Ray and lung CT scan images [J].
Bhandary, Abhir ;
Prabhu, G. Ananth ;
Rajinikanth, V ;
Thanaraj, K. Palani ;
Satapathy, Suresh Chandra ;
Robbins, David E. ;
Shasky, Charles ;
Zhang, Yu-Dong ;
Tavares, Joao Manuel R. S. ;
Raja, N. Sri Madhava .
PATTERN RECOGNITION LETTERS, 2020, 129 :271-278
[7]   A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma [J].
Cao, Hang ;
Erson-Omay, E. Zeynap ;
Li, Xuejun ;
Gunel, Murat ;
Moliterno, Jennifer ;
Fulbright, Robert K. .
EUROPEAN RADIOLOGY, 2020, 30 (06) :3073-3082
[8]   Relationship between survival and edema in malignant gliomas: Role of vascular endothelial growth factor and neuronal pentraxin 2 [J].
Carlson, Marc R. J. ;
Pope, Whitney B. ;
Horvath, Steve ;
Braunstein, Jerome G. ;
Nghiemphu, Phioanh ;
Tso, Cho-Lea ;
Mellinghoff, Ingo ;
Lai, Albert ;
Liau, Linda M. ;
Mischel, Paul S. ;
Dong, Jun ;
Nelson, Stanley F. ;
Cloughesy, Timothy F. .
CLINICAL CANCER RESEARCH, 2007, 13 (09) :2592-2598
[9]   Relationship between Tumor Enhancement, Edema, IDH1 Mutational Status, MGMT Promoter Methylation, and Survival in Glioblastoma [J].
Carrillo, J. A. ;
Lai, A. ;
Nghiemphu, P. L. ;
Kim, H. J. ;
Phillips, H. S. ;
Kharbanda, S. ;
Moftakhar, P. ;
Lalaezari, S. ;
Yong, W. ;
Ellingson, B. M. ;
Cloughesy, T. F. ;
Pope, W. B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (07) :1349-1355
[10]  
Chen H, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019), P301, DOI [10.1109/ICAIBD.2019.8836968, 10.1109/icaibd.2019.8836968]