Global existence and decay of solution for the nonisentropic Euler-Maxwell system with a nonconstant background density

被引:4
作者
Wang, Weike [1 ]
Xu, Xin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 03期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Nonisentropic Euler-Maxwell system; Energy estimate; Global existence; Green's function; Large time behavior; REGULARITY-LOSS TYPE; EQUATIONS; CONVERGENCE;
D O I
10.1007/s00033-016-0656-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Cauchy problem for the nonisentropic Euler-Maxwell system with a nonconstant background density is studied. The global existence of classical solution is constructed in three space dimensions provided the initial perturbation is sufficiently small. The proof is mainly based on classical energy estimate and the techniques of symmetrizer. And the time decay of the solution is also established by combining the decay estimate of the Green's function with some time-weighted estimate.
引用
收藏
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1984, Applied Mathematical Sciences
[2]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[3]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[4]  
Davidson P., 2001, CAM T APP M
[5]   GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE [J].
Duan, Renjun .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) :375-413
[6]   The machinery of macroautophagy [J].
Feng, Yuchen ;
He, Ding ;
Yao, Zhiyuan ;
Klionsky, Daniel J. .
CELL RESEARCH, 2014, 24 (01) :24-41
[7]  
Germain P, 2014, ANN SCI ECOLE NORM S, V47, P469
[8]   Initial layers and zero-relaxation limits of Euler-Maxwell equations [J].
Hajjej, Mohamed-Lasmer ;
Peng, Yue-Jun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1441-1465
[9]  
Jerome JW., 2003, Diff Integral Equ, V16, P1345
[10]   CAUCHY-PROBLEM FOR QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEMS [J].
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :181-205