Melt motion during liquid-encapsulated Czochralski crystal growth in steady and rotating magnetic fields

被引:7
作者
Yang, Mei
Ma, Nancy
Bliss, David F.
Bryant, George G.
机构
[1] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[2] USAF, Geophys Lab, Sensors Directorate, AFRL SNHC, Bedford, MA 01731 USA
关键词
semiconductor crystal growth; numerical modelling; magnetic fields; electromagnetic stirring; liquid encapsulated czochralski method; single crystal growth;
D O I
10.1016/j.ijheatfluidflow.2006.08.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
During the liquid-encapsulated Czochralski (LEC) process, a single compound semiconductor crystal such as gallium-antimonide is grown by the solidification of an initially molten semiconductor (melt) contained in a crucible. The motion of the electrically-conducting molten semiconductor can be controlled with externally-applied magnetic fields. A steady magnetic field provides an electromagnetic stabilization of the melt motion during the LEC process. With a steady axial magnetic field alone, the melt motion produces a radially-inward flow below the crystal-melt interface. Recently, an extremely promising flow phenomenon has been revealed in which a rotating magnetic field induces a radially-inward flow below the crystal-melt interface that may significantly improve the compositional homogeneity in the crystal. This paper presents a model for the melt motion during the LEC process with steady and rotating magnetic fields. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:768 / 776
页数:9
相关论文
共 26 条
[1]   MLEK CRYSTAL-GROWTH OF (100)INDIUM PHOSPHIDE [J].
BLISS, DF ;
HILTON, RM ;
BACHOWSKI, S ;
ADAMSKI, JA .
JOURNAL OF ELECTRONIC MATERIALS, 1991, 20 (12) :967-971
[2]   MLEK CRYSTAL-GROWTH OF LARGE DIAMETER (100) INDIUM-PHOSPHIDE [J].
BLISS, DF ;
HILTON, RM ;
ADAMSKI, JA .
JOURNAL OF CRYSTAL GROWTH, 1993, 128 (1-4) :451-456
[3]  
Dold P, 1999, PROG CRYST GROWTH CH, V38, P7, DOI 10.1016/S0960-8974(99)00007-8
[4]   GLOBAL MODELING OF HEAT-TRANSFER IN CRYSTAL-GROWTH FURNACES [J].
DUPRET, F ;
NICODEME, P ;
RYCKMANS, Y ;
WOUTERS, P ;
CROCHET, MJ .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1990, 33 (09) :1849-1871
[5]   Coupling of buoyant convections in boron oxide and a molten semiconductor in a vertical magnetic field [J].
Farrell, MV ;
Ma, N .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (04) :643-649
[6]   Radiation detector properties of CdTe0.9Se0.1:Cl crystals grown under microgravity in a rotating magnetic field [J].
Fiederle, M ;
Eiche, C ;
Joerger, W ;
Salk, M ;
Senchenkov, AS ;
Egorov, AV ;
Ebling, DG ;
Benz, KW .
JOURNAL OF CRYSTAL GROWTH, 1996, 166 (1-4) :256-260
[7]   MELT MOTION IN A CZOCHRALSKI CRYSTAL PULLER WITH AN AXIAL MAGNETIC-FIELD - MOTION DUE TO BUOYANCY AND THERMOCAPILLARITY [J].
HJELLMING, LN ;
WALKER, JS .
JOURNAL OF FLUID MECHANICS, 1987, 182 :335-368
[8]   Effects of rotating magnetic fields on temperature and oxygen distributions in silicon melt [J].
Kakimoto, K .
JOURNAL OF CRYSTAL GROWTH, 2002, 237 :1785-1790
[9]   THE EFFECT OF TEMPERATURE OSCILLATIONS AT THE GROWTH INTERFACE ON CRYSTAL PERFECTION [J].
KURODA, E ;
KOZUKA, H ;
TAKANO, Y .
JOURNAL OF CRYSTAL GROWTH, 1984, 68 (02) :613-623
[10]   Numerical simulation of LEC growth of InP crystal with an axial magnetic field [J].
Li, MW ;
Liu, CM ;
Wang, PQ .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (9-10) :1738-1746