Splitting Algorithms for Equilibrium Problems and Inclusion Problems on Hadamard Manifolds

被引:2
作者
Khammahawong, Konrawut [1 ,2 ]
Kumam, Poom [2 ,3 ]
Chaipunya, Parin [1 ,4 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, Bangkok, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fixed Point Res Lab,Fixed Point Theory & Applicat, Bangkok, Thailand
[3] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Bangkok, Thailand
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, NCAO Res Ctr,Fixed Point Theory & Applicat Res Gr, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
关键词
Equilibrium problems; fixed points; firmly nonexpansive mappings; Hadamard manifolds; inclusion problems; monotone vector fields; nonexpansive mappings; VALUED VARIATIONAL INCLUSIONS; MAXIMAL MONOTONE-OPERATORS; PROXIMAL POINT ALGORITHM; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; INEQUALITIES; APPROXIMATION; CONVERGENCE; ZEROS;
D O I
10.1080/01630563.2021.1933523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to introduce new iterative algorithms for finding a common solution from the set of equilibrium points of an equilibrium problem and of singularities of an inclusion problem on Hadamard manifolds. We discuss some particular cases of the problem with the proposed algorithms. The convergence results of a sequence generated by the proposed algorithms are proved under mild assumptions on a Hadamard manifold. Moreover, we apply our results to solve optimization problems and variational inequality problems.
引用
收藏
页码:1645 / 1682
页数:38
相关论文
共 54 条
  • [11] Brezis H., 1973, N HOLLAND MATH STUD, V5
  • [12] Bridson MR., 1999, METRIC SPACES NONPOS, DOI 10.1007/978-3-662-12494-9
  • [13] Yosida approximation equations technique for system of generalized set-valued variational inclusions
    Cao, Han-Wen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [14] Set-valued variational inclusions in Banach spaces
    Chang, SS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (02) : 438 - 454
  • [15] Generalized set-valued variational inclusions in Banach spaces
    Chang, SS
    Cho, YJ
    Lee, BS
    Jung, IH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) : 409 - 422
  • [16] Chang SS, 2001, NONLINEAR ANAL-THEOR, V47, P583
  • [17] Equilibrium problems in Hadamard manifolds
    Colao, Vittorio
    Lopez, Genaro
    Marino, Giuseppe
    Martin-Marquez, Victoria
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 61 - 77
  • [18] Da Cruz Neto JX., 2000, Balk. J. Geom. Appl, V5, P69
  • [19] do Carmo, 1992, RIEMANNIAN GEOMETRY
  • [20] A family of projective splitting methods for the sum of two maximal monotone operators
    Eckstein, Jonathan
    Svaiter, B. F.
    [J]. MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) : 173 - 199